IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2024-12-14 DOI:10.1111/nph.20346
Josef C. Garen, Sean T. Michaletz
{"title":"Temperature governs the relative contributions of cuticle and stomata to leaf minimum conductance","authors":"Josef C. Garen, Sean T. Michaletz","doi":"10.1111/nph.20346","DOIUrl":null,"url":null,"abstract":"<h2> Introduction</h2>\n<p>Climate change is increasing the frequency and severity of hot drought events in many parts of the world, with further increases forecast for the coming century (Intergovernmental Panel on Climate Change (IPCC), <span>2021</span>). During periods of water stress, plants typically reduce their stomatal aperture, restricting both water loss and carbon substrate availability for photosynthesis (Cowan &amp; Farquhar, <span>1977</span>). However, even with stomata maximally closed, leaves still lose water at a rate described by the leaf minimum conductance to water vapour, <i>g</i><sub>min</sub> (mol m<sup>−2</sup> s<sup>−1</sup>; Table 1) (Duursma <i>et al</i>., <span>2019</span>). While <i>g</i><sub>min</sub> is typically more than an order of magnitude less than stomatal conductance (<i>g</i><sub>sw</sub>; mol m<sup>−2</sup> s<sup>−1</sup>) during more favourable conditions (Slot <i>et al</i>., <span>2021</span>), plants may lose substantial amounts of water even under maximal stomatal closure due to high evaporative demand (Vicente-Serrano <i>et al</i>., <span>2020</span>). Improved understanding of <i>g</i><sub>min</sub> is necessary, as transpiration during hot drought events can have substantial effects on plant mortality and landscape-scale water balance (Park Williams <i>et al</i>., <span>2013</span>; Rogers <i>et al</i>., <span>2017</span>; Hammond &amp; Adams, <span>2019</span>).</p>\n<div>\n<header><span>Table 1. </span>List of symbols.</header>\n<div tabindex=\"0\">\n<table>\n<thead>\n<tr>\n<th>Symbol</th>\n<th>Definition</th>\n<th>Units</th>\n</tr>\n</thead>\n<tbody>\n<tr>\n<td><i>A</i></td>\n<td>Net assimilation rate</td>\n<td>μmol m<sup>−2</sup> s<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>a</i><sub>l</sub></td>\n<td>One-sided (projected) leaf area</td>\n<td>m<sup>2</sup></td>\n</tr>\n<tr>\n<td><i>c</i><sub>a</sub></td>\n<td>Ambient air CO<sub>2</sub> concentration</td>\n<td>μmol mol<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>c</i><sub>i</sub></td>\n<td>Leaf intercellular CO<sub>2</sub> concentration</td>\n<td>μmol mol<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>E</i></td>\n<td>Transpiration rate</td>\n<td>mol m<sup>−2</sup> s<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>g</i><sub>bw</sub></td>\n<td>Leaf boundary layer conductance to water vapour</td>\n<td>mol m<sup>−2</sup> s<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>g</i><sub>cw</sub></td>\n<td>Leaf cuticular conductance to water vapour</td>\n<td>mol m<sup>−2</sup> s<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>g</i><sub>min</sub></td>\n<td>Leaf minimum conductance to water vapour</td>\n<td>mol m<sup>−2</sup> s<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>g</i><sub>sw</sub></td>\n<td>Stomatal conductance to water vapour</td>\n<td>mol m<sup>−2</sup> s<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>g</i><sub>sw,min</sub></td>\n<td>Minimum stomatal conductance</td>\n<td>mol m<sup>−2</sup> s<sup>−1</sup></td>\n</tr>\n<tr>\n<td><span data-altimg=\"/cms/asset/a4dd9478-c7b4-4223-89b8-9d04cfe00212/nph20346-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" role=\"application\" sre-explorer- style=\"position: relative;\" tabindex=\"0\"><mjx-lazy aria-hidden=\"true\" data-mjx-lazy=\"0\"></mjx-lazy><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math data-semantic-=\"\" data-semantic-role=\"unknown\" data-semantic-speech=\"\" data-semantic-type=\"empty\" xmlns=\"http://www.w3.org/1998/Math/MathML\"></math></mjx-assistive-mml></mjx-container>\n</td>\n<td>Initial value of <span data-altimg=\"/cms/asset/5ec3a490-c0bf-443e-af66-78c259bd3da7/nph20346-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" role=\"application\" sre-explorer- style=\"position: relative;\" tabindex=\"0\"><mjx-lazy aria-hidden=\"true\" data-mjx-lazy=\"1\"></mjx-lazy><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math data-semantic-=\"\" data-semantic-role=\"unknown\" data-semantic-speech=\"\" data-semantic-type=\"empty\" xmlns=\"http://www.w3.org/1998/Math/MathML\"></math></mjx-assistive-mml></mjx-container>\n</td>\n<td>mol m<sup>−2</sup> s<sup>−1</sup></td>\n</tr>\n<tr>\n<td><span data-altimg=\"/cms/asset/a1cb7252-a2b5-44a2-90f0-d7a3adde2eb6/nph20346-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" role=\"application\" sre-explorer- style=\"position: relative;\" tabindex=\"0\"><mjx-lazy aria-hidden=\"true\" data-mjx-lazy=\"2\"></mjx-lazy><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math data-semantic-=\"\" data-semantic-role=\"unknown\" data-semantic-speech=\"\" data-semantic-type=\"empty\" xmlns=\"http://www.w3.org/1998/Math/MathML\"></math></mjx-assistive-mml></mjx-container>\n</td>\n<td>Stomatal conductance in excess of <i>g</i><sub>sw,min</sub></td>\n<td>mol m<sup>−2</sup> s<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>g</i><sub>tw</sub></td>\n<td>Leaf total conductance to water vapour</td>\n<td>mol m<sup>−2</sup> s<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>h</i></td>\n<td>Elevation</td>\n<td>m</td>\n</tr>\n<tr>\n<td><i>J</i><sub>max</sub></td>\n<td>Maximum rate of RuBP regeneration</td>\n<td>μmol m<sup>−2</sup> s<sup>−1</sup></td>\n</tr>\n<tr>\n<td>LDMC</td>\n<td>Leaf dry matter content</td>\n<td>mg g<sup>−1</sup></td>\n</tr>\n<tr>\n<td>LMA</td>\n<td>Leaf mass per unit area</td>\n<td>g m<sup>−2</sup></td>\n</tr>\n<tr>\n<td><i>l</i><sub>sp</sub></td>\n<td>Stomatal pore length</td>\n<td>μm</td>\n</tr>\n<tr>\n<td><i>m</i><sub>dry</sub></td>\n<td>Leaf dry mass</td>\n<td>g</td>\n</tr>\n<tr>\n<td><i>m</i><sub>wet</sub></td>\n<td>Leaf wet (fresh) mass</td>\n<td>g</td>\n</tr>\n<tr>\n<td><i>M</i></td>\n<td>Leaf mass</td>\n<td>g</td>\n</tr>\n<tr>\n<td><i>M</i><sub>0</sub></td>\n<td>Initial leaf mass</td>\n<td>g</td>\n</tr>\n<tr>\n<td><i>P</i><sub>atm</sub></td>\n<td>Atmospheric pressure</td>\n<td>kPa</td>\n</tr>\n<tr>\n<td>SVP</td>\n<td>Saturation vapour pressure</td>\n<td>kPa</td>\n</tr>\n<tr>\n<td><i>t</i></td>\n<td>Time</td>\n<td>s</td>\n</tr>\n<tr>\n<td><i>V</i><sub>cmax</sub></td>\n<td>Maximum rate of Rubisco carboxylation</td>\n<td>μmol m<sup>−2</sup> s<sup>−1</sup></td>\n</tr>\n<tr>\n<td>VPD</td>\n<td>Vapour pressure deficit</td>\n<td>kPa</td>\n</tr>\n<tr>\n<td><i>w</i><sub>a</sub></td>\n<td>Water vapour concentration in ambient air</td>\n<td>mmol mol<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>w</i><sub>i</sub></td>\n<td>Water vapour concentration in leaf intercellular air spaces</td>\n<td>mmol mol<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>w</i><sub>gs</sub></td>\n<td>Guard cell width</td>\n<td>μm</td>\n</tr>\n<tr>\n<td><i>x</i><sub>cut</sub></td>\n<td>Cuticle thickness</td>\n<td>μm</td>\n</tr>\n<tr>\n<td><i>x</i><sub>epi</sub></td>\n<td>Epidermis thickness</td>\n<td>μm</td>\n</tr>\n<tr>\n<td><i>x</i><sub>l</sub></td>\n<td>Leaf thickness</td>\n<td>μm</td>\n</tr>\n<tr>\n<td><i>x</i><sub>pal</sub></td>\n<td>Palisade mesophyll thickness</td>\n<td>μm</td>\n</tr>\n<tr>\n<td><i>x</i><sub>spg</sub></td>\n<td>Spongy mesophyll thickness</td>\n<td>μm</td>\n</tr>\n<tr>\n<td><i>β</i></td>\n<td>Conductance conversion factor</td>\n<td>g m mol<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>κ</i></td>\n<td>Ratio of adaxial to abaxial <i>c</i><sub>i</sub></td>\n<td>unitless</td>\n</tr>\n<tr>\n<td><i>μ</i></td>\n<td>Molar mass of water</td>\n<td>g mol<sup>−1</sup></td>\n</tr>\n<tr>\n<td><i>ρ</i><sub>s</sub></td>\n<td>Stomatal density</td>\n<td>m<sup>−2</sup></td>\n</tr>\n<tr>\n<td><i>τ</i></td>\n<td>Stomatal closure time constant</td>\n<td>s</td>\n</tr>\n</tbody>\n</table>\n</div>\n<div></div>\n</div>\n<p>Even under complete stomatal closure conditions, water may still escape the leaf via the cuticle (i.e. cuticular conductance, <i>g</i><sub>cw</sub>; mol m<sup>−2</sup> s<sup>−1</sup>) or via small apertures in incompletely closed stomata (i.e. minimum stomatal conductance, <i>g</i><sub>sw,min</sub>; mol m<sup>−2</sup> s<sup>−1</sup>; Fig. 1) (Duursma <i>et al</i>., <span>2019</span>). Careful measurements partitioning <i>g</i><sub>min</sub> into stomatal and cuticular components have yielded widely conflicting conclusions about the relative contributions of these pathways, from all water lost via the cuticle (Slot <i>et al</i>., <span>2021</span>), to highly variable species-specific ratios (6–44% water lost via the stomata; Machado <i>et al</i>., <span>2021</span>), to a majority of water lost via the stomata in one species (Márquez <i>et al</i>., <span>2022</span>).</p>\n<figure><picture>\n<source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/75a01649-4268-42d7-9d2f-1b99aec3b83a/nph20346-fig-0001-m.jpg\"/><img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/75a01649-4268-42d7-9d2f-1b99aec3b83a/nph20346-fig-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/98d1ac7b-192c-4a86-807b-462373670aba/nph20346-fig-0001-m.png\" title=\"Details are in the caption following the image\"/></picture><figcaption>\n<div><strong>Fig. 1<span style=\"font-weight:normal\"></span></strong><div>Open in figure viewer<i aria-hidden=\"true\"></i><span>PowerPoint</span></div>\n</div>\n<div>Leaf water fluxes during times of high and low water availability. During times of water availability and photosynthetic activity, stomata open to allow gas exchange with the atmosphere (upper image). In this case, leaf total conductance to water vapour <i>g</i><sub>tw</sub> is the sum of the stomatal conductance <i>g</i><sub>sw</sub> and the cuticular conductance <i>g</i><sub>cw</sub> (ignoring the boundary layer). During times of low water availability or low photosynthetic activity, stomata close to restrict water loss (lower image). With stomata fully closed, <i>g</i><sub>tw</sub> is at its minimum and is referred to as leaf minimum conductance <i>g</i><sub>min</sub>, which is a sum of <i>g</i><sub>cw</sub> and a minimum stomatal contribution <i>g</i><sub>sw,min</sub>. All conductances are expressed in units of mmol m<sup>−2</sup> s<sup>−1</sup>.</div>\n</figcaption>\n</figure>\n<p>As droughts often coincide with high temperatures, it is vital to understand the temperature dependence of <i>g</i><sub>min</sub>, as well as that of its underlying component pathways. The short-term temperature response of <i>g</i><sub>min</sub> frequently exhibits a monotonically increasing relationship with temperature over the range of <i>c</i>. 25–50°C, often with a ‘biphasic’ relationship (e.g. Schuster <i>et al</i>., <span>2016</span>; Bueno <i>et al</i>., <span>2019</span>; Billon <i>et al</i>., <span>2020</span>; Wang <i>et al</i>., <span>2024</span>; n.b., in nearly every study which has investigated the temperature response of <i>g</i><sub>min</sub> or <i>g</i><sub>cw</sub>, vapour pressure deficit (VPD) covaries with temperature; see the Discussion section). However, invariant relationships, or even declining <i>g</i><sub>min</sub> with temperature, have also been observed (e.g. Bueno <i>et al</i>., <span>2019</span>; Slot <i>et al</i>., <span>2021</span>). The short-term temperature dependence of <i>g</i><sub>cw</sub> also generally shows monotonically increasing relationships with temperature (e.g. Schreiber, <span>2001</span>; Riederer, <span>2006</span>), but this is typically measured on enzymatically isolated cuticles or leaf discs, rarely <i>in vivo</i> (cf., Márquez <i>et al</i>., <span>2021</span>). Crucially, the short-term temperature dependencies of both <i>g</i><sub>min</sub> and <i>g</i><sub>cw</sub> have never been measured concurrently <i>in vivo</i>; thus, little is known about how these different water pathways respond to temperature.</p>\n<p>Understanding how the different pathways of water loss contribute to the observed temperature sensitivity of <i>g</i><sub>min</sub> is necessary for informing theory on alternative plant water use strategies (Blonder <i>et al</i>., <span>2023</span>). Recently, researchers have reported stomatal ‘decoupling’ at high leaf temperatures (Aparecido <i>et al</i>., <span>2020</span>; Krich <i>et al</i>., <span>2022</span>; Marchin <i>et al</i>., <span>2023</span>). Stomatal decoupling occurs when stomatal conductance increases, or fails to decrease, despite declining assimilation rates at high leaf temperatures, contradicting theory based on optimality principles (Cowan &amp; Farquhar, <span>1977</span>; Medlyn <i>et al</i>., <span>2011</span>). It is not known whether this decoupling is an adaptive response of the plant intended to cool the leaves (Michaletz <i>et al</i>., <span>2016</span>; Garen <i>et al</i>., <span>2023</span>) or a passive ‘failure’ mechanism (Slot <i>et al</i>., <span>2021</span>; Blonder <i>et al</i>., <span>2023</span>). Improved understanding of the temperature response of <i>g</i><sub>min</sub> and its component processes will help in dissecting the mechanism underlying this high-temperature water use behaviour.</p>\n<p>Furthermore, understanding the temperature response of <i>g</i><sub>cw</sub> is necessary for improving gas exchange measurements. Recently, Márquez <i>et al</i>. (<span>2021</span>) proposed a new model for leaf gas exchange that accounts for <i>g</i><sub>cw</sub> (the Marquez-Stuart-Williams-Farquhar or MSF model). Previous gas exchange models calculated leaf intercellular CO<sub>2</sub> concentration <i>c</i><sub>i</sub> based on the ratio of diffusivities of CO<sub>2</sub> and H<sub>2</sub>O in air (<i>c</i>. 1.6), under the assumption that all transpiration occurs via the stomata (von Caemmerer &amp; Farquhar, <span>1981</span>). However, while CO<sub>2</sub> and H<sub>2</sub>O both move readily through the stomata, the cuticle is nearly impermeable to CO<sub>2</sub> (Boyer, <span>2015</span>). Given that some water vapour escapes via the cuticle, a model that attributes all transpiration to the stomata will overestimate <i>c</i><sub>i</sub> (Tominaga <i>et al</i>., <span>2018</span>). Photosynthetic capacity metrics such as <i>V</i><sub>cmax</sub> (maximum rate of Rubisco carboxylation) and <i>J</i><sub>max</sub> (maximum rate of RuBP regeneration) are estimated using the relationship between assimilation rate <i>A</i> and <i>c</i><sub>i</sub> (i.e. <i>A–c</i><sub>i</sub> curves) (Farquhar <i>et al</i>., <span>1980</span>; Sharkey <i>et al</i>., <span>2007</span>), hence errors in <i>c</i><sub>i</sub> may affect estimates of <i>V</i><sub>cmax</sub> and <i>J</i><sub>max</sub>, with potential consequences for process-based modelling frameworks that employ these metrics (Stinziano <i>et al</i>., <span>2019</span>; Hussain <i>et al</i>., <span>2024</span>). However, the effects of <i>g</i><sub>cw</sub> temperature dependence on metrics of photosynthetic capacity have not previously been investigated. To quantifying the magnitude of error and improve estimates of photosynthetic capacity, it is necessary to know whether and when to account for <i>g</i><sub>cw</sub> and its temperature dependence.</p>\n<div>Here, we address these questions by measuring the short-term temperature responses of <i>g</i><sub>min</sub> and <i>g</i><sub>cw</sub>. Our study has three goals as follows: <ol start=\"1\">\n<li>to describe the temperature dependencies of <i>g</i><sub>min</sub> and <i>g</i><sub>cw</sub>, and to describe how the pathways of leaf water loss vary with temperature;</li>\n<li>to test whether <i>g</i><sub>min</sub> and <i>g</i><sub>cw</sub> depend on anatomical, structural, and morphological leaf traits; and</li>\n<li>to test whether <i>g</i><sub>cw</sub> and its temperature dependence cause errors in measurements of photosynthetic capacity.</li>\n</ol>\n</div>\n<p>We demonstrate that the contributions of stomata and cuticle to <i>g</i><sub>min</sub> vary with temperature, with the cuticular water loss pathway dominating at higher temperatures. We find temperature-dependent relationships between leaf conductance and leaf traits, and we further show that photosynthetic capacity metrics depend on <i>g</i><sub>cw</sub>, particularly at low stomatal conductance.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"16 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20346","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

Schreiber, 2001; Riederer, 2006),但这通常是在酶切分离的角质层或叶盘上测量的,很少在体内测量(参见 Márquez 等人,2021 年)。至关重要的是,从未在体内同时测量过 gmin 和 gcw 的短期温度依赖性;因此,人们对这些不同的水分途径如何对温度做出反应知之甚少。了解不同的水分损失途径如何导致观察到的 gmin 的温度敏感性,对于为替代性植物水分利用策略的理论提供信息十分必要(Blonder 等人,2023 年)。最近,研究人员报告了在叶片温度较高时气孔 "脱钩 "的情况(Aparecido 等人,2020 年;Krich 等人,2022 年;Marchin 等人,2023 年)。气孔脱钩发生在叶片温度较高时,尽管同化率下降,但气孔导度却增加或不下降,这与基于最优性原理的理论相矛盾(Cowan &amp; Farquhar, 1977; Medlyn et al.)目前还不清楚这种脱钩是植物为了冷却叶片而做出的适应性反应(Michaletz 等人,2016 年;Garen 等人,2023 年),还是一种被动的 "失败 "机制(Slot 等人,2021 年;Blonder 等人,2023 年)。此外,了解 gcw 的温度响应对于改进气体交换测量也很有必要。最近,Márquez 等人(2021 年)提出了一种考虑到 gcw 的新叶片气体交换模型(Marquez-Stuart-Williams-Farquhar 或 MSF 模型)。以前的气体交换模型是根据 CO2 和 H2O 在空气中的扩散比(c. 1.6)计算叶片细胞间 CO2 浓度 ci,假设所有蒸腾作用都是通过气孔进行的(von Caemmerer &amp; Farquhar, 1981)。然而,虽然 CO2 和 H2O 都很容易通过气孔,但角质层对 CO2 几乎是不渗透的(Boyer,2015 年)。鉴于部分水蒸气会通过角质层逸出,将所有蒸腾作用都归因于气孔的模型会高估 ci(Tominaga 等人,2018 年)。光合作用能力指标,如 Vcmax(Rubisco 羧化的最大速率)和 Jmax(RuBP 再生的最大速率),是利用同化速率 A 与 ci 之间的关系(即 A-ci 曲线)估算出来的(Farquhar 等人,1980 年;Sharkey 等人,1980 年)、1980 年;Sharkey 等人,2007 年),因此 ci 的误差可能会影响 Vcmax 和 Jmax 的估计值,从而对采用这些指标的基于过程的建模框架产生潜在影响(Stinziano 等人,2019 年;Hussain 等人,2024 年)。然而,此前尚未研究过 gcw 温度依赖性对光合作用能力指标的影响。为了量化误差的大小并改进光合作用能力的估算,有必要知道是否以及何时考虑 gcw 及其温度依赖性。我们的研究有以下三个目标:描述 gmin 和 gcw 的温度依赖性,并描述叶片失水途径如何随温度而变化;检验 gmin 和 gcw 是否依赖于叶片的解剖、结构和形态特征;检验 gcw 及其温度依赖性是否会导致光合作用能力测量的误差。我们发现叶片传导率和叶片性状之间的关系与温度有关,并进一步证明光合作用能力指标取决于 gcw,尤其是在气孔传导率较低时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature governs the relative contributions of cuticle and stomata to leaf minimum conductance

Introduction

Climate change is increasing the frequency and severity of hot drought events in many parts of the world, with further increases forecast for the coming century (Intergovernmental Panel on Climate Change (IPCC), 2021). During periods of water stress, plants typically reduce their stomatal aperture, restricting both water loss and carbon substrate availability for photosynthesis (Cowan & Farquhar, 1977). However, even with stomata maximally closed, leaves still lose water at a rate described by the leaf minimum conductance to water vapour, gmin (mol m−2 s−1; Table 1) (Duursma et al., 2019). While gmin is typically more than an order of magnitude less than stomatal conductance (gsw; mol m−2 s−1) during more favourable conditions (Slot et al., 2021), plants may lose substantial amounts of water even under maximal stomatal closure due to high evaporative demand (Vicente-Serrano et al., 2020). Improved understanding of gmin is necessary, as transpiration during hot drought events can have substantial effects on plant mortality and landscape-scale water balance (Park Williams et al., 2013; Rogers et al., 2017; Hammond & Adams, 2019).

Table 1. List of symbols.
Symbol Definition Units
A Net assimilation rate μmol m−2 s−1
al One-sided (projected) leaf area m2
ca Ambient air CO2 concentration μmol mol−1
ci Leaf intercellular CO2 concentration μmol mol−1
E Transpiration rate mol m−2 s−1
gbw Leaf boundary layer conductance to water vapour mol m−2 s−1
gcw Leaf cuticular conductance to water vapour mol m−2 s−1
gmin Leaf minimum conductance to water vapour mol m−2 s−1
gsw Stomatal conductance to water vapour mol m−2 s−1
gsw,min Minimum stomatal conductance mol m−2 s−1
Initial value of mol m−2 s−1
Stomatal conductance in excess of gsw,min mol m−2 s−1
gtw Leaf total conductance to water vapour mol m−2 s−1
h Elevation m
Jmax Maximum rate of RuBP regeneration μmol m−2 s−1
LDMC Leaf dry matter content mg g−1
LMA Leaf mass per unit area g m−2
lsp Stomatal pore length μm
mdry Leaf dry mass g
mwet Leaf wet (fresh) mass g
M Leaf mass g
M0 Initial leaf mass g
Patm Atmospheric pressure kPa
SVP Saturation vapour pressure kPa
t Time s
Vcmax Maximum rate of Rubisco carboxylation μmol m−2 s−1
VPD Vapour pressure deficit kPa
wa Water vapour concentration in ambient air mmol mol−1
wi Water vapour concentration in leaf intercellular air spaces mmol mol−1
wgs Guard cell width μm
xcut Cuticle thickness μm
xepi Epidermis thickness μm
xl Leaf thickness μm
xpal Palisade mesophyll thickness μm
xspg Spongy mesophyll thickness μm
β Conductance conversion factor g m mol−1
κ Ratio of adaxial to abaxial ci unitless
μ Molar mass of water g mol−1
ρs Stomatal density m−2
τ Stomatal closure time constant s

Even under complete stomatal closure conditions, water may still escape the leaf via the cuticle (i.e. cuticular conductance, gcw; mol m−2 s−1) or via small apertures in incompletely closed stomata (i.e. minimum stomatal conductance, gsw,min; mol m−2 s−1; Fig. 1) (Duursma et al., 2019). Careful measurements partitioning gmin into stomatal and cuticular components have yielded widely conflicting conclusions about the relative contributions of these pathways, from all water lost via the cuticle (Slot et al., 2021), to highly variable species-specific ratios (6–44% water lost via the stomata; Machado et al., 2021), to a majority of water lost via the stomata in one species (Márquez et al., 2022).

Details are in the caption following the image
Fig. 1
Open in figure viewerPowerPoint
Leaf water fluxes during times of high and low water availability. During times of water availability and photosynthetic activity, stomata open to allow gas exchange with the atmosphere (upper image). In this case, leaf total conductance to water vapour gtw is the sum of the stomatal conductance gsw and the cuticular conductance gcw (ignoring the boundary layer). During times of low water availability or low photosynthetic activity, stomata close to restrict water loss (lower image). With stomata fully closed, gtw is at its minimum and is referred to as leaf minimum conductance gmin, which is a sum of gcw and a minimum stomatal contribution gsw,min. All conductances are expressed in units of mmol m−2 s−1.

As droughts often coincide with high temperatures, it is vital to understand the temperature dependence of gmin, as well as that of its underlying component pathways. The short-term temperature response of gmin frequently exhibits a monotonically increasing relationship with temperature over the range of c. 25–50°C, often with a ‘biphasic’ relationship (e.g. Schuster et al., 2016; Bueno et al., 2019; Billon et al., 2020; Wang et al., 2024; n.b., in nearly every study which has investigated the temperature response of gmin or gcw, vapour pressure deficit (VPD) covaries with temperature; see the Discussion section). However, invariant relationships, or even declining gmin with temperature, have also been observed (e.g. Bueno et al., 2019; Slot et al., 2021). The short-term temperature dependence of gcw also generally shows monotonically increasing relationships with temperature (e.g. Schreiber, 2001; Riederer, 2006), but this is typically measured on enzymatically isolated cuticles or leaf discs, rarely in vivo (cf., Márquez et al., 2021). Crucially, the short-term temperature dependencies of both gmin and gcw have never been measured concurrently in vivo; thus, little is known about how these different water pathways respond to temperature.

Understanding how the different pathways of water loss contribute to the observed temperature sensitivity of gmin is necessary for informing theory on alternative plant water use strategies (Blonder et al., 2023). Recently, researchers have reported stomatal ‘decoupling’ at high leaf temperatures (Aparecido et al., 2020; Krich et al., 2022; Marchin et al., 2023). Stomatal decoupling occurs when stomatal conductance increases, or fails to decrease, despite declining assimilation rates at high leaf temperatures, contradicting theory based on optimality principles (Cowan & Farquhar, 1977; Medlyn et al., 2011). It is not known whether this decoupling is an adaptive response of the plant intended to cool the leaves (Michaletz et al., 2016; Garen et al., 2023) or a passive ‘failure’ mechanism (Slot et al., 2021; Blonder et al., 2023). Improved understanding of the temperature response of gmin and its component processes will help in dissecting the mechanism underlying this high-temperature water use behaviour.

Furthermore, understanding the temperature response of gcw is necessary for improving gas exchange measurements. Recently, Márquez et al. (2021) proposed a new model for leaf gas exchange that accounts for gcw (the Marquez-Stuart-Williams-Farquhar or MSF model). Previous gas exchange models calculated leaf intercellular CO2 concentration ci based on the ratio of diffusivities of CO2 and H2O in air (c. 1.6), under the assumption that all transpiration occurs via the stomata (von Caemmerer & Farquhar, 1981). However, while CO2 and H2O both move readily through the stomata, the cuticle is nearly impermeable to CO2 (Boyer, 2015). Given that some water vapour escapes via the cuticle, a model that attributes all transpiration to the stomata will overestimate ci (Tominaga et al., 2018). Photosynthetic capacity metrics such as Vcmax (maximum rate of Rubisco carboxylation) and Jmax (maximum rate of RuBP regeneration) are estimated using the relationship between assimilation rate A and ci (i.e. A–ci curves) (Farquhar et al., 1980; Sharkey et al., 2007), hence errors in ci may affect estimates of Vcmax and Jmax, with potential consequences for process-based modelling frameworks that employ these metrics (Stinziano et al., 2019; Hussain et al., 2024). However, the effects of gcw temperature dependence on metrics of photosynthetic capacity have not previously been investigated. To quantifying the magnitude of error and improve estimates of photosynthetic capacity, it is necessary to know whether and when to account for gcw and its temperature dependence.

Here, we address these questions by measuring the short-term temperature responses of gmin and gcw. Our study has three goals as follows:
  1. to describe the temperature dependencies of gmin and gcw, and to describe how the pathways of leaf water loss vary with temperature;
  2. to test whether gmin and gcw depend on anatomical, structural, and morphological leaf traits; and
  3. to test whether gcw and its temperature dependence cause errors in measurements of photosynthetic capacity.

We demonstrate that the contributions of stomata and cuticle to gmin vary with temperature, with the cuticular water loss pathway dominating at higher temperatures. We find temperature-dependent relationships between leaf conductance and leaf traits, and we further show that photosynthetic capacity metrics depend on gcw, particularly at low stomatal conductance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
Insights into the subdaily variations in methane, nitrous oxide and carbon dioxide fluxes from upland tropical tree stems Two reductases complete steroidal glycoalkaloids biosynthesis in potato Aging-dependent temporal regulation of MIR156 epigenetic silencing by CiLDL1 and CiNF-YB8 in chrysanthemum At least two functions for BdMUTE during the development of stomatal complexes in Brachypodium distachyon MEDIATOR15 destabilizes DELLA protein to promote gibberellin‐mediated plant development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1