基于生成式对抗网络的轻量级自适应空间信道注意力高效网络 B3,用于从采样不足的数据中重建磁共振图像。

IF 2.1 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic resonance imaging Pub Date : 2024-12-11 DOI:10.1016/j.mri.2024.110281
Penta Anil Kumar, R Gunasundari
{"title":"基于生成式对抗网络的轻量级自适应空间信道注意力高效网络 B3,用于从采样不足的数据中重建磁共振图像。","authors":"Penta Anil Kumar, R Gunasundari","doi":"10.1016/j.mri.2024.110281","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic Resonance Imaging (MRI) stands out as a notable non-invasive method for medical imaging assessments, widely employed in early medical diagnoses due to its exceptional resolution in portraying soft tissue structures. However, the MRI method faces challenges with its inherently slow acquisition process, stemming from the sequential sampling in k-space and limitations in traversal speed due to physiological and hardware constraints. Compressed Sensing in MRI (CS-MRI) accelerates image acquisition by utilizing greatly under-sampled k-space information. Despite its advantages, conventional CS-MRI encounters issues such as sluggish iterations and artefacts at higher acceleration factors. Recent advancements integrate deep learning models into CS-MRI, inspired by successes in various computer vision domains. It has drawn significant attention from the MRI community because of its great potential for image reconstruction from undersampled k-space data in fast MRI. This paper proposes a lightweight Adaptive Spatial-Channel Attention EfficientNet B3-based Generative Adversarial Network (ASCA-EffNet GAN) for fast, high-quality MR image reconstruction from greatly under-sampled k-space information in CS-MRI. The proposed GAN employs a U-net generator with ASCA-based EfficientNet B3 for encoder blocks and a ResNet decoder. The discriminator is a binary classifier with ASCA-based EfficientNet B3, a fully connected layer and a sigmoid layer. The EfficientNet B3 utilizes a compound scaling strategy that achieves a balance amongst model depth, width, and resolution, resulting in optimal performance with a reduced number of parameters. Furthermore, the adaptive attention mechanisms in the proposed ASCA-EffNet GAN effectively capture spatial and channel-wise features, contributing to detailed anatomical structure reconstruction. Experimental evaluations on the dataset demonstrate ASCA-EffNet GAN's superior performance across various metrics, surpassing conventional reconstruction methods. Hence, ASCA-EffNet GAN showcases remarkable reconstruction capabilities even under high under-sampling rates, making it suitable for clinical applications.</p>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":" ","pages":"110281"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lightweight adaptive spatial channel attention efficient net B3 based generative adversarial network approach for MR image reconstruction from under sampled data.\",\"authors\":\"Penta Anil Kumar, R Gunasundari\",\"doi\":\"10.1016/j.mri.2024.110281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic Resonance Imaging (MRI) stands out as a notable non-invasive method for medical imaging assessments, widely employed in early medical diagnoses due to its exceptional resolution in portraying soft tissue structures. However, the MRI method faces challenges with its inherently slow acquisition process, stemming from the sequential sampling in k-space and limitations in traversal speed due to physiological and hardware constraints. Compressed Sensing in MRI (CS-MRI) accelerates image acquisition by utilizing greatly under-sampled k-space information. Despite its advantages, conventional CS-MRI encounters issues such as sluggish iterations and artefacts at higher acceleration factors. Recent advancements integrate deep learning models into CS-MRI, inspired by successes in various computer vision domains. It has drawn significant attention from the MRI community because of its great potential for image reconstruction from undersampled k-space data in fast MRI. This paper proposes a lightweight Adaptive Spatial-Channel Attention EfficientNet B3-based Generative Adversarial Network (ASCA-EffNet GAN) for fast, high-quality MR image reconstruction from greatly under-sampled k-space information in CS-MRI. The proposed GAN employs a U-net generator with ASCA-based EfficientNet B3 for encoder blocks and a ResNet decoder. The discriminator is a binary classifier with ASCA-based EfficientNet B3, a fully connected layer and a sigmoid layer. The EfficientNet B3 utilizes a compound scaling strategy that achieves a balance amongst model depth, width, and resolution, resulting in optimal performance with a reduced number of parameters. Furthermore, the adaptive attention mechanisms in the proposed ASCA-EffNet GAN effectively capture spatial and channel-wise features, contributing to detailed anatomical structure reconstruction. Experimental evaluations on the dataset demonstrate ASCA-EffNet GAN's superior performance across various metrics, surpassing conventional reconstruction methods. Hence, ASCA-EffNet GAN showcases remarkable reconstruction capabilities even under high under-sampling rates, making it suitable for clinical applications.</p>\",\"PeriodicalId\":18165,\"journal\":{\"name\":\"Magnetic resonance imaging\",\"volume\":\" \",\"pages\":\"110281\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mri.2024.110281\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mri.2024.110281","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A lightweight adaptive spatial channel attention efficient net B3 based generative adversarial network approach for MR image reconstruction from under sampled data.

Magnetic Resonance Imaging (MRI) stands out as a notable non-invasive method for medical imaging assessments, widely employed in early medical diagnoses due to its exceptional resolution in portraying soft tissue structures. However, the MRI method faces challenges with its inherently slow acquisition process, stemming from the sequential sampling in k-space and limitations in traversal speed due to physiological and hardware constraints. Compressed Sensing in MRI (CS-MRI) accelerates image acquisition by utilizing greatly under-sampled k-space information. Despite its advantages, conventional CS-MRI encounters issues such as sluggish iterations and artefacts at higher acceleration factors. Recent advancements integrate deep learning models into CS-MRI, inspired by successes in various computer vision domains. It has drawn significant attention from the MRI community because of its great potential for image reconstruction from undersampled k-space data in fast MRI. This paper proposes a lightweight Adaptive Spatial-Channel Attention EfficientNet B3-based Generative Adversarial Network (ASCA-EffNet GAN) for fast, high-quality MR image reconstruction from greatly under-sampled k-space information in CS-MRI. The proposed GAN employs a U-net generator with ASCA-based EfficientNet B3 for encoder blocks and a ResNet decoder. The discriminator is a binary classifier with ASCA-based EfficientNet B3, a fully connected layer and a sigmoid layer. The EfficientNet B3 utilizes a compound scaling strategy that achieves a balance amongst model depth, width, and resolution, resulting in optimal performance with a reduced number of parameters. Furthermore, the adaptive attention mechanisms in the proposed ASCA-EffNet GAN effectively capture spatial and channel-wise features, contributing to detailed anatomical structure reconstruction. Experimental evaluations on the dataset demonstrate ASCA-EffNet GAN's superior performance across various metrics, surpassing conventional reconstruction methods. Hence, ASCA-EffNet GAN showcases remarkable reconstruction capabilities even under high under-sampling rates, making it suitable for clinical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magnetic resonance imaging
Magnetic resonance imaging 医学-核医学
CiteScore
4.70
自引率
4.00%
发文量
194
审稿时长
83 days
期刊介绍: Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.
期刊最新文献
Preclinical validation of a metasurface-inspired conformal elliptical-cylinder resonator for wrist MRI at 1.5 T. P53 status combined with MRI findings for prognosis prediction of single hepatocellular carcinoma. Predicting progression in triple-negative breast cancer patients undergoing neoadjuvant chemotherapy: Insights from peritumoral radiomics. Multiple b value diffusion-weighted MRI of liver: A novel respiratory frequency-modulated continuous-wave radar-trigger technique and comparison with free-breathing technique. Segmental myocardial tissue remodeling and atrial arrhythmias in hypertrophic cardiomyopathy: Findings from T1-mapping MRI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1