南海叶绿素-a浓度时空分布及其可能的环境调控机制

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Marine environmental research Pub Date : 2024-12-09 DOI:10.1016/j.marenvres.2024.106902
Xijun Wei, Hui Zhao
{"title":"南海叶绿素-a浓度时空分布及其可能的环境调控机制","authors":"Xijun Wei, Hui Zhao","doi":"10.1016/j.marenvres.2024.106902","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, the spatial and temporal distribution of chlorophyll-a (Chl-a) concentration in the South China Sea (SCS) and its major environmental regulator mechanisms were studied by using satellite remote sensing data sea surface temperature (SST), sea surface wind (SSW), and aerosol optical depth (AOD) spanning from January 2000 to December 2022. The results show that Chl-a in the SCS exhibit notable spatio-temporal variations: they peak in winter (∼0.234 mg m<sup>-3</sup>) and autumn (∼0.156 mg m<sup>-3</sup>), and decline in spring (∼0.144 mg m<sup>-3</sup>) and summer (∼0.136 mg m<sup>-3</sup>). Spatially, Chl-a near the coast and in upwelling areas are generally higher than those in offshore areas. A monthly average time series correlation analysis across the entire SCS shows that Chl-a significantly correlate with SST (R = -0.78, P < 0.01) and SSW (R = 0.78, P < 0.01), and moderately correlate with AOD (R = 0.29, P < 0.01). The regulator of environmental factors also shows seasonal differences: during the winter monsoon period, Chl-a has the highest partial correlation with SSW (R = 0.73, P < 0.01), followed by SST (R = -0.55, P < 0.01), and no significant partial correlation with AOD (R = 0.14, P > 0.05); during the summer monsoon period, Chl-a has the highest partial correlation with SST (R = -0.63, P < 0.01), followed by AOD (R = 0.40, P < 0.01), and no significant partial correlation with SSW (R = 0.12, P > 0.05). A comprehensive analysis indicates that the mixing and upwelling processes regulated by the winter monsoon and SST exert a greater influence on nutrient variations. The enhanced mixing caused by the winter monsoon and the cold environment promote the growth of phytoplankton, leading to higher Chl-a concentrations in winter compared to other seasons. In contrast, the increased temperature in the summer monsoon period significantly weakens the mixing effect of wind speed and nutrients influx from deep layers to surface layers. Consequently, the external nutrient sourced from aerosol becomes crucial in determining Chl-a distribution, especially in oligotrophic regions near the southern SCS and the basin. However, in regions where other nutrient sources significantly contribute, such as the coastal areas influenced by seasonal upwelling, the contribution of aerosols is negligible.</p>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"204 ","pages":"106902"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal distribution of chlorophyll-a concentration in the south China sea and its possible environmental regulation mechanisms.\",\"authors\":\"Xijun Wei, Hui Zhao\",\"doi\":\"10.1016/j.marenvres.2024.106902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, the spatial and temporal distribution of chlorophyll-a (Chl-a) concentration in the South China Sea (SCS) and its major environmental regulator mechanisms were studied by using satellite remote sensing data sea surface temperature (SST), sea surface wind (SSW), and aerosol optical depth (AOD) spanning from January 2000 to December 2022. The results show that Chl-a in the SCS exhibit notable spatio-temporal variations: they peak in winter (∼0.234 mg m<sup>-3</sup>) and autumn (∼0.156 mg m<sup>-3</sup>), and decline in spring (∼0.144 mg m<sup>-3</sup>) and summer (∼0.136 mg m<sup>-3</sup>). Spatially, Chl-a near the coast and in upwelling areas are generally higher than those in offshore areas. A monthly average time series correlation analysis across the entire SCS shows that Chl-a significantly correlate with SST (R = -0.78, P < 0.01) and SSW (R = 0.78, P < 0.01), and moderately correlate with AOD (R = 0.29, P < 0.01). The regulator of environmental factors also shows seasonal differences: during the winter monsoon period, Chl-a has the highest partial correlation with SSW (R = 0.73, P < 0.01), followed by SST (R = -0.55, P < 0.01), and no significant partial correlation with AOD (R = 0.14, P > 0.05); during the summer monsoon period, Chl-a has the highest partial correlation with SST (R = -0.63, P < 0.01), followed by AOD (R = 0.40, P < 0.01), and no significant partial correlation with SSW (R = 0.12, P > 0.05). A comprehensive analysis indicates that the mixing and upwelling processes regulated by the winter monsoon and SST exert a greater influence on nutrient variations. The enhanced mixing caused by the winter monsoon and the cold environment promote the growth of phytoplankton, leading to higher Chl-a concentrations in winter compared to other seasons. In contrast, the increased temperature in the summer monsoon period significantly weakens the mixing effect of wind speed and nutrients influx from deep layers to surface layers. Consequently, the external nutrient sourced from aerosol becomes crucial in determining Chl-a distribution, especially in oligotrophic regions near the southern SCS and the basin. However, in regions where other nutrient sources significantly contribute, such as the coastal areas influenced by seasonal upwelling, the contribution of aerosols is negligible.</p>\",\"PeriodicalId\":18204,\"journal\":{\"name\":\"Marine environmental research\",\"volume\":\"204 \",\"pages\":\"106902\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine environmental research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.marenvres.2024.106902\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.marenvres.2024.106902","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文利用2000年1月至2022年12月的卫星遥感资料海面温度(SST)、海面风(SSW)和气溶胶光学深度(AOD),研究了南海叶绿素a(Chl-a)浓度的时空分布及其主要环境调控机制。结果表明,南中国海的 Chl-a 呈现出明显的时空变化:在冬季(∼0.234 mg m-3)和秋季(∼0.156 mg m-3)达到峰值,在春季(∼0.144 mg m-3)和夏季(∼0.136 mg m-3)下降。从空间上看,近岸和上升流区域的 Chl-a 通常高于离岸区域。对整个 SCS 的月平均时间序列相关性分析表明,Chl-a 与 SST 显著相关(R = -0.78,P 0.05);在夏季季风期,Chl-a 与 SST 的部分相关性最高(R = -0.63,P 0.05)。综合分析表明,冬季季风和海温调节的混合和上涌过程对营养盐变化的影响更大。冬季季风和寒冷环境造成的混合作用增强,促进了浮游植物的生长,导致冬季的 Chl-a 浓度高于其他季节。相反,夏季季风时期气温升高,风速和营养物质从深层流入表层的混合效应明显减弱。因此,来自气溶胶的外部营养物质成为决定 Chl-a 分布的关键,尤其是在靠近南部南中国海和海盆的低营养区域。然而,在其他营养源起重要作用的地区,如受季节性上升流影响的沿岸地区,气溶胶的作用可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatiotemporal distribution of chlorophyll-a concentration in the south China sea and its possible environmental regulation mechanisms.

In this paper, the spatial and temporal distribution of chlorophyll-a (Chl-a) concentration in the South China Sea (SCS) and its major environmental regulator mechanisms were studied by using satellite remote sensing data sea surface temperature (SST), sea surface wind (SSW), and aerosol optical depth (AOD) spanning from January 2000 to December 2022. The results show that Chl-a in the SCS exhibit notable spatio-temporal variations: they peak in winter (∼0.234 mg m-3) and autumn (∼0.156 mg m-3), and decline in spring (∼0.144 mg m-3) and summer (∼0.136 mg m-3). Spatially, Chl-a near the coast and in upwelling areas are generally higher than those in offshore areas. A monthly average time series correlation analysis across the entire SCS shows that Chl-a significantly correlate with SST (R = -0.78, P < 0.01) and SSW (R = 0.78, P < 0.01), and moderately correlate with AOD (R = 0.29, P < 0.01). The regulator of environmental factors also shows seasonal differences: during the winter monsoon period, Chl-a has the highest partial correlation with SSW (R = 0.73, P < 0.01), followed by SST (R = -0.55, P < 0.01), and no significant partial correlation with AOD (R = 0.14, P > 0.05); during the summer monsoon period, Chl-a has the highest partial correlation with SST (R = -0.63, P < 0.01), followed by AOD (R = 0.40, P < 0.01), and no significant partial correlation with SSW (R = 0.12, P > 0.05). A comprehensive analysis indicates that the mixing and upwelling processes regulated by the winter monsoon and SST exert a greater influence on nutrient variations. The enhanced mixing caused by the winter monsoon and the cold environment promote the growth of phytoplankton, leading to higher Chl-a concentrations in winter compared to other seasons. In contrast, the increased temperature in the summer monsoon period significantly weakens the mixing effect of wind speed and nutrients influx from deep layers to surface layers. Consequently, the external nutrient sourced from aerosol becomes crucial in determining Chl-a distribution, especially in oligotrophic regions near the southern SCS and the basin. However, in regions where other nutrient sources significantly contribute, such as the coastal areas influenced by seasonal upwelling, the contribution of aerosols is negligible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
期刊最新文献
The differential physiological responses to heat stress in the scleractinian coral Pocillopora damicornis are affected by its energy reserve. How short-term change in temperature or salinity affect cellular immune parameters of three-spined stickleback, Gasterosteus aculeatus? Pelagic shark intestine as a potential temporary sink for plastic and non-plastic particles. Ecological risk assessment for BDE-47 in marine environment based on species sensitivity distribution method. Predicted environmental concentration (PEC), environmental risk assessment (ERA) and prioritization of antiretroviral drugs (ARVs) in seawater from Guarujá (Brazilian coastal zone).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1