浓度对脂质包覆超声激发微气泡共振频率影响的实验研究。

IF 8.7 1区 化学 Q1 ACOUSTICS Ultrasonics Sonochemistry Pub Date : 2025-01-01 Epub Date: 2024-12-05 DOI:10.1016/j.ultsonch.2024.107170
Hossein Haghi, Mahshid Yaali, Agata A Exner, Michael C Kolios
{"title":"浓度对脂质包覆超声激发微气泡共振频率影响的实验研究。","authors":"Hossein Haghi, Mahshid Yaali, Agata A Exner, Michael C Kolios","doi":"10.1016/j.ultsonch.2024.107170","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an experimental investigation of the influence of MB concentration on the resonance frequency of lipid-coated microbubbles (MBs). Expanding on theoretical models and numerical simulations from previous research, this work experimentally investigates the effect of MB size on the rate of resonance frequency increase with concentration, a phenomenon observed across MBs with two different lipid compositions: propylene glycol (PG) and propylene glycol and glycerol (PGG). Employing a custom-designed ultrasound attenuation measurement setup, we measured the frequency-dependent attenuation of MBs, isolating MBs based on size to generate distinct monodisperse sub-populations for analysis. The resonance frequency of MBs was determined by identifying the attenuation peak in the broadband attenuation ultrasound attenuation measurements. Our experimental findings confirm that larger MBs (≈2.1μm) demonstrate a more significant shift in resonance frequency (≈ 5 MHz, ≈ 40%) as a function of MB concentration. In contrast, smaller MBs (≈1.3μm) show a minor shift in the resonant frequency (≈ 1.8 MHz, ≈ 8%), underlining the importance of size in determining acoustic behavior compared to changes in the lipid shell properties. Additionally, we observed that resonance frequency increase with concentration reaching a saturation point at higher concentrations. This plateau occurs at higher concentrations for larger MBs (≈2.1μm), while smaller MBs (≈1.6μm and ≈1.3μm) reach this saturation point at lower concentrations. Furthermore, the study highlights the small effect of bubble-bubble interactions on the resonance frequency of MB populations, particularly at lower MB concentrations and for smaller MBs. This insight is important for applications utilizing MB clusters, such as contrast-enhanced ultrasound imaging and MB-mediated therapies. While both size and lipid shell composition influence resonance frequency, MB size has a more significant effect. In conclusion, our findings affirm the need to consider both MB size and concentration when utilizing MBs for clinical and industrial ultrasonic applications.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"107170"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699441/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on the effect of concentration on the resonance frequency of lipid coated ultrasonically excited microbubbles.\",\"authors\":\"Hossein Haghi, Mahshid Yaali, Agata A Exner, Michael C Kolios\",\"doi\":\"10.1016/j.ultsonch.2024.107170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an experimental investigation of the influence of MB concentration on the resonance frequency of lipid-coated microbubbles (MBs). Expanding on theoretical models and numerical simulations from previous research, this work experimentally investigates the effect of MB size on the rate of resonance frequency increase with concentration, a phenomenon observed across MBs with two different lipid compositions: propylene glycol (PG) and propylene glycol and glycerol (PGG). Employing a custom-designed ultrasound attenuation measurement setup, we measured the frequency-dependent attenuation of MBs, isolating MBs based on size to generate distinct monodisperse sub-populations for analysis. The resonance frequency of MBs was determined by identifying the attenuation peak in the broadband attenuation ultrasound attenuation measurements. Our experimental findings confirm that larger MBs (≈2.1μm) demonstrate a more significant shift in resonance frequency (≈ 5 MHz, ≈ 40%) as a function of MB concentration. In contrast, smaller MBs (≈1.3μm) show a minor shift in the resonant frequency (≈ 1.8 MHz, ≈ 8%), underlining the importance of size in determining acoustic behavior compared to changes in the lipid shell properties. Additionally, we observed that resonance frequency increase with concentration reaching a saturation point at higher concentrations. This plateau occurs at higher concentrations for larger MBs (≈2.1μm), while smaller MBs (≈1.6μm and ≈1.3μm) reach this saturation point at lower concentrations. Furthermore, the study highlights the small effect of bubble-bubble interactions on the resonance frequency of MB populations, particularly at lower MB concentrations and for smaller MBs. This insight is important for applications utilizing MB clusters, such as contrast-enhanced ultrasound imaging and MB-mediated therapies. While both size and lipid shell composition influence resonance frequency, MB size has a more significant effect. In conclusion, our findings affirm the need to consider both MB size and concentration when utilizing MBs for clinical and industrial ultrasonic applications.</p>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"112 \",\"pages\":\"107170\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699441/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ultsonch.2024.107170\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ultsonch.2024.107170","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过实验研究了MB浓度对脂包微泡共振频率的影响。在先前研究的理论模型和数值模拟的基础上,本研究通过实验研究了MB大小对共振频率随浓度增加速率的影响,这一现象在具有两种不同脂质组成的MB中观察到:丙二醇(PG)和丙二醇和甘油(PGG)。采用定制设计的超声衰减测量装置,我们测量了mb的频率相关衰减,根据大小分离mb,以产生不同的单分散亚群进行分析。通过识别宽带衰减超声衰减测量中的衰减峰来确定mb的共振频率。我们的实验结果证实,更大的MB(≈2.1μm)表明共振频率(≈5 MHz,≈40%)随MB浓度的变化更显著。相比之下,较小的mb(≈1.3μm)显示出谐振频率的微小变化(≈1.8 MHz,≈8%),强调了与脂质壳性质变化相比,尺寸在决定声学行为方面的重要性。此外,我们观察到共振频率随着浓度的增加而增加,在较高的浓度下达到饱和点。较大的mb(≈2.1μm)在较高的浓度下出现该平台,而较小的mb(≈1.6μm和≈1.3μm)在较低的浓度下达到该饱和点。此外,该研究强调气泡-气泡相互作用对MB种群共振频率的影响很小,特别是在较低MB浓度和较小MB时。这一见解对于利用MB集群的应用非常重要,例如对比增强超声成像和MB介导的治疗。脂壳大小和脂壳组成对共振频率均有影响,其中MB大小的影响更为显著。总之,我们的研究结果证实,在临床和工业超声应用中使用MB时,需要考虑MB的大小和浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation on the effect of concentration on the resonance frequency of lipid coated ultrasonically excited microbubbles.

This study presents an experimental investigation of the influence of MB concentration on the resonance frequency of lipid-coated microbubbles (MBs). Expanding on theoretical models and numerical simulations from previous research, this work experimentally investigates the effect of MB size on the rate of resonance frequency increase with concentration, a phenomenon observed across MBs with two different lipid compositions: propylene glycol (PG) and propylene glycol and glycerol (PGG). Employing a custom-designed ultrasound attenuation measurement setup, we measured the frequency-dependent attenuation of MBs, isolating MBs based on size to generate distinct monodisperse sub-populations for analysis. The resonance frequency of MBs was determined by identifying the attenuation peak in the broadband attenuation ultrasound attenuation measurements. Our experimental findings confirm that larger MBs (≈2.1μm) demonstrate a more significant shift in resonance frequency (≈ 5 MHz, ≈ 40%) as a function of MB concentration. In contrast, smaller MBs (≈1.3μm) show a minor shift in the resonant frequency (≈ 1.8 MHz, ≈ 8%), underlining the importance of size in determining acoustic behavior compared to changes in the lipid shell properties. Additionally, we observed that resonance frequency increase with concentration reaching a saturation point at higher concentrations. This plateau occurs at higher concentrations for larger MBs (≈2.1μm), while smaller MBs (≈1.6μm and ≈1.3μm) reach this saturation point at lower concentrations. Furthermore, the study highlights the small effect of bubble-bubble interactions on the resonance frequency of MB populations, particularly at lower MB concentrations and for smaller MBs. This insight is important for applications utilizing MB clusters, such as contrast-enhanced ultrasound imaging and MB-mediated therapies. While both size and lipid shell composition influence resonance frequency, MB size has a more significant effect. In conclusion, our findings affirm the need to consider both MB size and concentration when utilizing MBs for clinical and industrial ultrasonic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
期刊最新文献
Ultrasound-assisted enhancement of bioactive compounds in hawthorn vinegar: A functional approach to anticancer and antidiabetic effects. Innovative strategy for full-scale polar components explicition and ultrasonic-assisted optimization of Astragalus membranaceus flower. Utilizing ultrasound for the extraction of polysaccharides from the tuber of Typhonium giganteum Engl.: Extraction conditions, structural characterization and bioactivities. Functional nanocrystal as effective contrast agents for dual-mode imaging: Live-cell sonoluminescence and contrast-enhanced echography. Process, dynamics and bioeffects of acoustic droplet vaporization induced by dual-frequency focused ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1