Walmir Dos Reis Miranda Filho, Fábio Nogueira Demarqui
{"title":"二元生存数据的一类半参数模型。","authors":"Walmir Dos Reis Miranda Filho, Fábio Nogueira Demarqui","doi":"10.1007/s10985-024-09642-x","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new class of bivariate survival models based on the family of Archimedean copulas with margins modeled by the Yang and Prentice (YP) model. The Ali-Mikhail-Haq (AMH), Clayton, Frank, Gumbel-Hougaard (GH), and Joe copulas are employed to accommodate the dependency among marginal distributions. Baseline distributions are modeled semiparametrically by the Piecewise Exponential (PE) distribution and the Bernstein polynomials (BP). Inference procedures for the proposed class of models are based on the maximum likelihood (ML) approach. The new class of models possesses some attractive features: i) the ability to take into account survival data with crossing survival curves; ii) the inclusion of the well-known proportional hazards (PH) and proportional odds (PO) models as particular cases; iii) greater flexibility provided by the semiparametric modeling of the marginal baseline distributions; iv) the availability of closed-form expressions for the likelihood functions, leading to more straightforward inferential procedures. The properties of the proposed class are numerically investigated through an extensive simulation study. Finally, we demonstrate the versatility of our new class of models through the analysis of survival data involving patients diagnosed with ovarian cancer.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"102-125"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of semiparametric models for bivariate survival data.\",\"authors\":\"Walmir Dos Reis Miranda Filho, Fábio Nogueira Demarqui\",\"doi\":\"10.1007/s10985-024-09642-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a new class of bivariate survival models based on the family of Archimedean copulas with margins modeled by the Yang and Prentice (YP) model. The Ali-Mikhail-Haq (AMH), Clayton, Frank, Gumbel-Hougaard (GH), and Joe copulas are employed to accommodate the dependency among marginal distributions. Baseline distributions are modeled semiparametrically by the Piecewise Exponential (PE) distribution and the Bernstein polynomials (BP). Inference procedures for the proposed class of models are based on the maximum likelihood (ML) approach. The new class of models possesses some attractive features: i) the ability to take into account survival data with crossing survival curves; ii) the inclusion of the well-known proportional hazards (PH) and proportional odds (PO) models as particular cases; iii) greater flexibility provided by the semiparametric modeling of the marginal baseline distributions; iv) the availability of closed-form expressions for the likelihood functions, leading to more straightforward inferential procedures. The properties of the proposed class are numerically investigated through an extensive simulation study. Finally, we demonstrate the versatility of our new class of models through the analysis of survival data involving patients diagnosed with ovarian cancer.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":\" \",\"pages\":\"102-125\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-024-09642-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09642-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A class of semiparametric models for bivariate survival data.
We propose a new class of bivariate survival models based on the family of Archimedean copulas with margins modeled by the Yang and Prentice (YP) model. The Ali-Mikhail-Haq (AMH), Clayton, Frank, Gumbel-Hougaard (GH), and Joe copulas are employed to accommodate the dependency among marginal distributions. Baseline distributions are modeled semiparametrically by the Piecewise Exponential (PE) distribution and the Bernstein polynomials (BP). Inference procedures for the proposed class of models are based on the maximum likelihood (ML) approach. The new class of models possesses some attractive features: i) the ability to take into account survival data with crossing survival curves; ii) the inclusion of the well-known proportional hazards (PH) and proportional odds (PO) models as particular cases; iii) greater flexibility provided by the semiparametric modeling of the marginal baseline distributions; iv) the availability of closed-form expressions for the likelihood functions, leading to more straightforward inferential procedures. The properties of the proposed class are numerically investigated through an extensive simulation study. Finally, we demonstrate the versatility of our new class of models through the analysis of survival data involving patients diagnosed with ovarian cancer.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.