回顾智能城市中的智能车辆:危险、影响和威胁状况

IF 5.8 2区 计算机科学 Q1 TELECOMMUNICATIONS Vehicular Communications Pub Date : 2025-02-01 DOI:10.1016/j.vehcom.2024.100871
Brooke Kidmose
{"title":"回顾智能城市中的智能车辆:危险、影响和威胁状况","authors":"Brooke Kidmose","doi":"10.1016/j.vehcom.2024.100871","DOIUrl":null,"url":null,"abstract":"<div><div>The humble, mechanical automobile has gradually evolved into our modern connected and autonomous vehicles (CAVs)—also known as “smart vehicles.” Similarly, our cities are gradually developing into “smart cities,” where municipal services from transportation networks to utilities to recycling to law enforcement are integrated. The idea, with both smart vehicles and smart cities, is that more data leads to better, more informed decisions. Smart vehicles and smart cities would acquire data from their own equipment (e.g., cameras, sensors) and from their connections—e.g., connections to fellow smart vehicles, to road-side infrastructure, to smart transportation systems (STSs), etc.</div><div>Unfortunately, the paradigm of smart vehicles in smart cities is rife with danger and ripe for misuse. One vulnerable system or service could become an attacker's entry point, facilitating access to every connected vehicle, device, etc. Worse, smart vehicles and smart cities are inherently cyber-physical; a cyberattack can have physical consequences, including destruction of infrastructure and loss of life. Lastly, to leverage all the benefits of smart vehicles in smart cities, we would need to accept exorbitant levels of data collection and surveillance, which, in the absence of ironclad privacy protections, could lead to total lack of privacy.</div><div>In this work, we define the automotive context—i.e., smart vehicles—within the larger context of smart cities as our threat landscape. Then, we enumerate and describe all of the (1) threats, (2) attack surfaces &amp; targets, (3) areas of concern (indirect vulnerabilities &amp; threats), and (4) impacts of smart vehicles in smart cities. Our objective is to demonstrate that the dangers are real and imminent—in the hope that they will be addressed before an attack on the “smart vehicles in smart cities” paradigm results in loss of life.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"51 ","pages":"Article 100871"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of smart vehicles in smart cities: Dangers, impacts, and the threat landscape\",\"authors\":\"Brooke Kidmose\",\"doi\":\"10.1016/j.vehcom.2024.100871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The humble, mechanical automobile has gradually evolved into our modern connected and autonomous vehicles (CAVs)—also known as “smart vehicles.” Similarly, our cities are gradually developing into “smart cities,” where municipal services from transportation networks to utilities to recycling to law enforcement are integrated. The idea, with both smart vehicles and smart cities, is that more data leads to better, more informed decisions. Smart vehicles and smart cities would acquire data from their own equipment (e.g., cameras, sensors) and from their connections—e.g., connections to fellow smart vehicles, to road-side infrastructure, to smart transportation systems (STSs), etc.</div><div>Unfortunately, the paradigm of smart vehicles in smart cities is rife with danger and ripe for misuse. One vulnerable system or service could become an attacker's entry point, facilitating access to every connected vehicle, device, etc. Worse, smart vehicles and smart cities are inherently cyber-physical; a cyberattack can have physical consequences, including destruction of infrastructure and loss of life. Lastly, to leverage all the benefits of smart vehicles in smart cities, we would need to accept exorbitant levels of data collection and surveillance, which, in the absence of ironclad privacy protections, could lead to total lack of privacy.</div><div>In this work, we define the automotive context—i.e., smart vehicles—within the larger context of smart cities as our threat landscape. Then, we enumerate and describe all of the (1) threats, (2) attack surfaces &amp; targets, (3) areas of concern (indirect vulnerabilities &amp; threats), and (4) impacts of smart vehicles in smart cities. Our objective is to demonstrate that the dangers are real and imminent—in the hope that they will be addressed before an attack on the “smart vehicles in smart cities” paradigm results in loss of life.</div></div>\",\"PeriodicalId\":54346,\"journal\":{\"name\":\"Vehicular Communications\",\"volume\":\"51 \",\"pages\":\"Article 100871\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicular Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214209624001463\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624001463","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

简陋的机械汽车已经逐渐演变成现代联网和自动驾驶汽车(cav),也被称为“智能汽车”。同样,我们的城市正在逐渐发展成为“智能城市”,从交通网络到公用事业,从回收到执法的市政服务都是一体化的。智能汽车和智能城市的理念是,更多的数据会带来更好、更明智的决策。智能汽车和智能城市将从它们自己的设备(如摄像头、传感器)和它们的连接中获取数据。与其他智能车辆、路边基础设施、智能交通系统(STSs)等的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of smart vehicles in smart cities: Dangers, impacts, and the threat landscape
The humble, mechanical automobile has gradually evolved into our modern connected and autonomous vehicles (CAVs)—also known as “smart vehicles.” Similarly, our cities are gradually developing into “smart cities,” where municipal services from transportation networks to utilities to recycling to law enforcement are integrated. The idea, with both smart vehicles and smart cities, is that more data leads to better, more informed decisions. Smart vehicles and smart cities would acquire data from their own equipment (e.g., cameras, sensors) and from their connections—e.g., connections to fellow smart vehicles, to road-side infrastructure, to smart transportation systems (STSs), etc.
Unfortunately, the paradigm of smart vehicles in smart cities is rife with danger and ripe for misuse. One vulnerable system or service could become an attacker's entry point, facilitating access to every connected vehicle, device, etc. Worse, smart vehicles and smart cities are inherently cyber-physical; a cyberattack can have physical consequences, including destruction of infrastructure and loss of life. Lastly, to leverage all the benefits of smart vehicles in smart cities, we would need to accept exorbitant levels of data collection and surveillance, which, in the absence of ironclad privacy protections, could lead to total lack of privacy.
In this work, we define the automotive context—i.e., smart vehicles—within the larger context of smart cities as our threat landscape. Then, we enumerate and describe all of the (1) threats, (2) attack surfaces & targets, (3) areas of concern (indirect vulnerabilities & threats), and (4) impacts of smart vehicles in smart cities. Our objective is to demonstrate that the dangers are real and imminent—in the hope that they will be addressed before an attack on the “smart vehicles in smart cities” paradigm results in loss of life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vehicular Communications
Vehicular Communications Engineering-Electrical and Electronic Engineering
CiteScore
12.70
自引率
10.40%
发文量
88
审稿时长
62 days
期刊介绍: Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier. The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications: Vehicle to vehicle and vehicle to infrastructure communications Channel modelling, modulating and coding Congestion Control and scalability issues Protocol design, testing and verification Routing in vehicular networks Security issues and countermeasures Deployment and field testing Reducing energy consumption and enhancing safety of vehicles Wireless in–car networks Data collection and dissemination methods Mobility and handover issues Safety and driver assistance applications UAV Underwater communications Autonomous cooperative driving Social networks Internet of vehicles Standardization of protocols.
期刊最新文献
Intelligent and efficient Metaverse rendering and caching in UAV-aided vehicular edge computing 5G NR sidelink time domain based resource allocation in C-V2X Task offloading and multi-cache placement based on DRL in UAV-assisted MEC networks A question-centric review on DRL-based optimization for UAV-assisted MEC sensor and IoT applications, challenges, and future directions Optimizing task offloading in MIMO-enabled vehicular networks through deep reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1