{"title":"掺铜铋氧化物增强过氧单硫酸盐活化以高效光降解环丙沙星:铜位点的关键作用、理论计算和机制见解","authors":"Wei Wang, Zhixiong Yang, Yuan Li, Junting Wang, Gaoke Zhang","doi":"10.1039/d4en00994k","DOIUrl":null,"url":null,"abstract":"The combination of semiconductor photocatalyst mediated photocatalytic reaction and persulfate activation is considered as a promising way to achieve efficient degradation of recalcitrant organic pollutants in water. Here, a series of Cu-doped BiO2-x nanosheets was successfully manufactured and carried out to activate peroxymonosulfate (PMS) for the removal of ciprofloxacin (CIP). Here, with the help of visible light, the optimal Cu-doped BiO2-x nanosheet (CBO-1) activating PMS for the removal of CIP has a degradation rate 4.64 times more than that of BiO2-x. Photo/electro-chemical characterizations and theoretical calculations have demonstrated that the introduction of Cu can also increase the electron density near the Fermi level, which accelerates the separation and movement of photo-generated carriers of photocatalysts, and then reduces the activation energy barrier of PMS and improves its utilization efficiency. Besides, the Cu center with poor electrons was prone to form Cu ligands with CIP for enhancing the reduction of Cu(II) to accelerate the activation of PMS. Therefore, this work proposes a thinking on synthesizing efficient semiconductor photocatalysts for activating PMS, providing a valuable reference for the efficient mineralization of recalcitrant contaminant in water.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"18 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced peroxymonosulfate activation by copper-doped bismuth oxides for the efficient photo-degradation of ciprofloxacin: Crucial role of copper sites, theory calculation and mechanism insight\",\"authors\":\"Wei Wang, Zhixiong Yang, Yuan Li, Junting Wang, Gaoke Zhang\",\"doi\":\"10.1039/d4en00994k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of semiconductor photocatalyst mediated photocatalytic reaction and persulfate activation is considered as a promising way to achieve efficient degradation of recalcitrant organic pollutants in water. Here, a series of Cu-doped BiO2-x nanosheets was successfully manufactured and carried out to activate peroxymonosulfate (PMS) for the removal of ciprofloxacin (CIP). Here, with the help of visible light, the optimal Cu-doped BiO2-x nanosheet (CBO-1) activating PMS for the removal of CIP has a degradation rate 4.64 times more than that of BiO2-x. Photo/electro-chemical characterizations and theoretical calculations have demonstrated that the introduction of Cu can also increase the electron density near the Fermi level, which accelerates the separation and movement of photo-generated carriers of photocatalysts, and then reduces the activation energy barrier of PMS and improves its utilization efficiency. Besides, the Cu center with poor electrons was prone to form Cu ligands with CIP for enhancing the reduction of Cu(II) to accelerate the activation of PMS. Therefore, this work proposes a thinking on synthesizing efficient semiconductor photocatalysts for activating PMS, providing a valuable reference for the efficient mineralization of recalcitrant contaminant in water.\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d4en00994k\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00994k","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced peroxymonosulfate activation by copper-doped bismuth oxides for the efficient photo-degradation of ciprofloxacin: Crucial role of copper sites, theory calculation and mechanism insight
The combination of semiconductor photocatalyst mediated photocatalytic reaction and persulfate activation is considered as a promising way to achieve efficient degradation of recalcitrant organic pollutants in water. Here, a series of Cu-doped BiO2-x nanosheets was successfully manufactured and carried out to activate peroxymonosulfate (PMS) for the removal of ciprofloxacin (CIP). Here, with the help of visible light, the optimal Cu-doped BiO2-x nanosheet (CBO-1) activating PMS for the removal of CIP has a degradation rate 4.64 times more than that of BiO2-x. Photo/electro-chemical characterizations and theoretical calculations have demonstrated that the introduction of Cu can also increase the electron density near the Fermi level, which accelerates the separation and movement of photo-generated carriers of photocatalysts, and then reduces the activation energy barrier of PMS and improves its utilization efficiency. Besides, the Cu center with poor electrons was prone to form Cu ligands with CIP for enhancing the reduction of Cu(II) to accelerate the activation of PMS. Therefore, this work proposes a thinking on synthesizing efficient semiconductor photocatalysts for activating PMS, providing a valuable reference for the efficient mineralization of recalcitrant contaminant in water.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis