注入锁定光子振荡器中的等长线:高精度定位的新领域

Alireza Famili;Georgia Himona;Yannis Kominis;Angelos Stavrou;Vassilios Kovanis
{"title":"注入锁定光子振荡器中的等长线:高精度定位的新领域","authors":"Alireza Famili;Georgia Himona;Yannis Kominis;Angelos Stavrou;Vassilios Kovanis","doi":"10.1109/JISPIN.2024.3504396","DOIUrl":null,"url":null,"abstract":"For decades, high-accuracy localization has driven the interest of the research community. Recent cases include augmented reality (AR) and virtual reality (VR), indoor robotics, and drone applications, which have led to the emergence of subcentimeter localization requirements. This study introduces a new approach for high-accuracy localization by utilizing \n<italic>isochrons</i>\n in injection-locked tunable photonic oscillators, which we referred to as \n<bold>Iso</b>\n<italic>chrons in Photonic Oscillators for</i>\n \n<bold>Pos</b>\n<italic>itioning</i>\n (IsoPos). The proposed paradigm shift takes advantage of photonic oscillators' radical frequency tunability and isochron structure to offer an innovative path for measuring the time of arrival (ToA). To achieve precise ToA measurements, IsoPos utilizes the phase shift induced by the incoming user signal. This shift is detected by analyzing the \n<italic>phase response</i>\n of the receiver, i.e., a photonic oscillator, which is exclusively determined by its isochrons' structure. Furthermore, IsoPos uses the injection-locking method as well as the nonlinear properties of injection-locked photonic oscillators to achieve highly accurate phase synchronization between different positioning nodes. This contributes to a seamless 3-D localization devoid of errors caused by miss-synchronization. Our numerical simulations show that IsoPos achieves sub-1 mm accuracy in 3-D localization, surpassing the precision of existing positioning systems by at least one order of magnitude.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"304-319"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10763456","citationCount":"0","resultStr":"{\"title\":\"Isochrons in Injection Locked Photonic Oscillators: A New Frontier for High-Precision Localization\",\"authors\":\"Alireza Famili;Georgia Himona;Yannis Kominis;Angelos Stavrou;Vassilios Kovanis\",\"doi\":\"10.1109/JISPIN.2024.3504396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For decades, high-accuracy localization has driven the interest of the research community. Recent cases include augmented reality (AR) and virtual reality (VR), indoor robotics, and drone applications, which have led to the emergence of subcentimeter localization requirements. This study introduces a new approach for high-accuracy localization by utilizing \\n<italic>isochrons</i>\\n in injection-locked tunable photonic oscillators, which we referred to as \\n<bold>Iso</b>\\n<italic>chrons in Photonic Oscillators for</i>\\n \\n<bold>Pos</b>\\n<italic>itioning</i>\\n (IsoPos). The proposed paradigm shift takes advantage of photonic oscillators' radical frequency tunability and isochron structure to offer an innovative path for measuring the time of arrival (ToA). To achieve precise ToA measurements, IsoPos utilizes the phase shift induced by the incoming user signal. This shift is detected by analyzing the \\n<italic>phase response</i>\\n of the receiver, i.e., a photonic oscillator, which is exclusively determined by its isochrons' structure. Furthermore, IsoPos uses the injection-locking method as well as the nonlinear properties of injection-locked photonic oscillators to achieve highly accurate phase synchronization between different positioning nodes. This contributes to a seamless 3-D localization devoid of errors caused by miss-synchronization. Our numerical simulations show that IsoPos achieves sub-1 mm accuracy in 3-D localization, surpassing the precision of existing positioning systems by at least one order of magnitude.\",\"PeriodicalId\":100621,\"journal\":{\"name\":\"IEEE Journal of Indoor and Seamless Positioning and Navigation\",\"volume\":\"2 \",\"pages\":\"304-319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10763456\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Indoor and Seamless Positioning and Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10763456/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10763456/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Isochrons in Injection Locked Photonic Oscillators: A New Frontier for High-Precision Localization
For decades, high-accuracy localization has driven the interest of the research community. Recent cases include augmented reality (AR) and virtual reality (VR), indoor robotics, and drone applications, which have led to the emergence of subcentimeter localization requirements. This study introduces a new approach for high-accuracy localization by utilizing isochrons in injection-locked tunable photonic oscillators, which we referred to as Iso chrons in Photonic Oscillators for Pos itioning (IsoPos). The proposed paradigm shift takes advantage of photonic oscillators' radical frequency tunability and isochron structure to offer an innovative path for measuring the time of arrival (ToA). To achieve precise ToA measurements, IsoPos utilizes the phase shift induced by the incoming user signal. This shift is detected by analyzing the phase response of the receiver, i.e., a photonic oscillator, which is exclusively determined by its isochrons' structure. Furthermore, IsoPos uses the injection-locking method as well as the nonlinear properties of injection-locked photonic oscillators to achieve highly accurate phase synchronization between different positioning nodes. This contributes to a seamless 3-D localization devoid of errors caused by miss-synchronization. Our numerical simulations show that IsoPos achieves sub-1 mm accuracy in 3-D localization, surpassing the precision of existing positioning systems by at least one order of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover Advancing Resilient and Trustworthy Seamless Positioning and Navigation: Highlights From the Second Volume of J-ISPIN IEEE Journal of Indoor and Seamless Positioning and Navigation Publication Information Enhancing Indoor Localization Accuracy in Dense IoT-Integrated 5GNR Networks: Introducing SGNCL for Sensor-Guided NLoS Correction Localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1