多尺度模拟揭示了NOTCH蛋白的结构和配体的特异性特征。

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2025-01-21 Epub Date: 2024-12-13 DOI:10.1016/j.bpj.2024.12.014
Surabhi Rathore, Deepanshi Gahlot, Jesu Castin, Arastu Pandey, Shreyas Arvindekar, Shruthi Viswanath, Lipi Thukral
{"title":"多尺度模拟揭示了NOTCH蛋白的结构和配体的特异性特征。","authors":"Surabhi Rathore, Deepanshi Gahlot, Jesu Castin, Arastu Pandey, Shreyas Arvindekar, Shruthi Viswanath, Lipi Thukral","doi":"10.1016/j.bpj.2024.12.014","DOIUrl":null,"url":null,"abstract":"<p><p>NOTCH, a single-pass transmembrane protein, plays a crucial role in cell fate determination through cell-to-cell communication. It interacts with two canonical ligands, Delta-like (DLL) and Jagged (JAG), located on neighboring cells to regulate diverse cellular processes. Despite extensive studies on the functional roles of NOTCH and its ligands in cellular growth, the structural details of full-length NOTCH and its ligands remain poorly understood. In this study, we employed fragment-based modeling and multiscale simulations to study the full-length structure of the human NOTCH ectodomain, comprising 1756 amino acids. We performed coarse-grained dynamics simulations of NOTCH in both glycosylated and nonglycosylated forms to investigate the role of glycosylation in modulating its conformational dynamics. In apo form, coarse-grained simulations revealed that glycosylated NOTCH protein can transition from an elongated structure of ∼86 nm from the membrane surface to a semicompact state (∼23.81 ± 9.98 nm), which aligns with cryo-EM data. To transition from the apo form to ligand-bound forms of NOTCH, we followed an atomistic and integrative modeling approach to model the interactions between NOTCH-DLL4 and NOTCH-JAG1. Atomistic simulations of the smaller bound fragment EGF8-13 patch revealed conformational plasticity critical for NOTCH binding, while integrative modeling of full-length complexes suggested a larger binding surface than reported previously. Simulations of pathogenic mutations revealed that E360K and R448Q disrupted the NOTCH-ligand interaction surfaces, causing dissociation. In contrast, C1133Y in the Abruptex domain compromised protein stability by disrupting the domain's interaction with the ligand-binding domain in the apo form of NOTCH-ECD. These findings provide a detailed molecular understanding of NOTCH and its ligands, offering insights that could enable the development of novel therapeutic approaches to selectively target pathogenic NOTCH signaling.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"393-407"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale simulations reveal architecture of NOTCH protein and ligand specific features.\",\"authors\":\"Surabhi Rathore, Deepanshi Gahlot, Jesu Castin, Arastu Pandey, Shreyas Arvindekar, Shruthi Viswanath, Lipi Thukral\",\"doi\":\"10.1016/j.bpj.2024.12.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NOTCH, a single-pass transmembrane protein, plays a crucial role in cell fate determination through cell-to-cell communication. It interacts with two canonical ligands, Delta-like (DLL) and Jagged (JAG), located on neighboring cells to regulate diverse cellular processes. Despite extensive studies on the functional roles of NOTCH and its ligands in cellular growth, the structural details of full-length NOTCH and its ligands remain poorly understood. In this study, we employed fragment-based modeling and multiscale simulations to study the full-length structure of the human NOTCH ectodomain, comprising 1756 amino acids. We performed coarse-grained dynamics simulations of NOTCH in both glycosylated and nonglycosylated forms to investigate the role of glycosylation in modulating its conformational dynamics. In apo form, coarse-grained simulations revealed that glycosylated NOTCH protein can transition from an elongated structure of ∼86 nm from the membrane surface to a semicompact state (∼23.81 ± 9.98 nm), which aligns with cryo-EM data. To transition from the apo form to ligand-bound forms of NOTCH, we followed an atomistic and integrative modeling approach to model the interactions between NOTCH-DLL4 and NOTCH-JAG1. Atomistic simulations of the smaller bound fragment EGF8-13 patch revealed conformational plasticity critical for NOTCH binding, while integrative modeling of full-length complexes suggested a larger binding surface than reported previously. Simulations of pathogenic mutations revealed that E360K and R448Q disrupted the NOTCH-ligand interaction surfaces, causing dissociation. In contrast, C1133Y in the Abruptex domain compromised protein stability by disrupting the domain's interaction with the ligand-binding domain in the apo form of NOTCH-ECD. These findings provide a detailed molecular understanding of NOTCH and its ligands, offering insights that could enable the development of novel therapeutic approaches to selectively target pathogenic NOTCH signaling.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"393-407\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.12.014\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.12.014","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

NOTCH是一种单代跨膜蛋白,通过细胞间通讯在细胞命运决定中起着至关重要的作用。它与位于邻近细胞上的两个典型配体Delta-like (DLL)和Jagged (JAG)相互作用,以调节各种细胞过程。尽管对NOTCH及其配体在细胞生长中的功能作用进行了广泛的研究,但对全长NOTCH及其配体的结构细节仍知之甚少。在这项研究中,我们采用基于片段的建模和多尺度模拟研究了人类NOTCH外畴的全长结构,包括1,756个氨基酸。我们对NOTCH进行了糖基化和非糖基化两种形式的粗粒动力学模拟,以研究糖基化在调节其构象动力学中的作用。在载脂蛋白形式下,粗粒度模拟显示糖基化的NOTCH蛋白可以从距离膜表面约86 nm的细长结构转变为半致密状态(约23.81±9.98 nm),这与冷冻电镜数据一致。为了将NOTCH从载子形式转变为配体结合形式,我们采用了原子和综合建模方法来模拟NOTCH- dll4和NOTCH- jag1之间的相互作用。较小的结合片段EGF8-13补丁的原子模拟显示,构象可塑性对NOTCH结合至关重要,而全长复合物的综合建模表明,其结合表面比先前报道的要大。致病性突变的模拟表明,E360K和R448Q破坏了notch -配体相互作用表面,导致解离。相反,Abruptex结构域中的C1133Y通过破坏该结构域与NOTCH-ECD载子形式的配体结合结构域的相互作用而破坏了蛋白质的稳定性。这些发现提供了对NOTCH及其配体的详细分子理解,提供了能够开发选择性靶向致病性NOTCH信号的新治疗方法的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale simulations reveal architecture of NOTCH protein and ligand specific features.

NOTCH, a single-pass transmembrane protein, plays a crucial role in cell fate determination through cell-to-cell communication. It interacts with two canonical ligands, Delta-like (DLL) and Jagged (JAG), located on neighboring cells to regulate diverse cellular processes. Despite extensive studies on the functional roles of NOTCH and its ligands in cellular growth, the structural details of full-length NOTCH and its ligands remain poorly understood. In this study, we employed fragment-based modeling and multiscale simulations to study the full-length structure of the human NOTCH ectodomain, comprising 1756 amino acids. We performed coarse-grained dynamics simulations of NOTCH in both glycosylated and nonglycosylated forms to investigate the role of glycosylation in modulating its conformational dynamics. In apo form, coarse-grained simulations revealed that glycosylated NOTCH protein can transition from an elongated structure of ∼86 nm from the membrane surface to a semicompact state (∼23.81 ± 9.98 nm), which aligns with cryo-EM data. To transition from the apo form to ligand-bound forms of NOTCH, we followed an atomistic and integrative modeling approach to model the interactions between NOTCH-DLL4 and NOTCH-JAG1. Atomistic simulations of the smaller bound fragment EGF8-13 patch revealed conformational plasticity critical for NOTCH binding, while integrative modeling of full-length complexes suggested a larger binding surface than reported previously. Simulations of pathogenic mutations revealed that E360K and R448Q disrupted the NOTCH-ligand interaction surfaces, causing dissociation. In contrast, C1133Y in the Abruptex domain compromised protein stability by disrupting the domain's interaction with the ligand-binding domain in the apo form of NOTCH-ECD. These findings provide a detailed molecular understanding of NOTCH and its ligands, offering insights that could enable the development of novel therapeutic approaches to selectively target pathogenic NOTCH signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Physical effects of crowdant size and concentration on collective microtubule polymerization. Transformer Graph Variational Autoencoder for Generative Molecular Design. Competing addition processes give distinct growth regimes in the assembly of 1D filaments. Synaptic cleft geometry modulates NMDAR opening probability by tuning neurotransmitter residence time. Adhesion-driven vesicle translocation through membrane-covered pores.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1