种内和种间重组率变异的遗传学研究。

IF 2.1 3区 生物学 Q3 ECOLOGY Journal of Evolutionary Biology Pub Date : 2024-12-16 DOI:10.1093/jeb/voae158
Bret A Payseur
{"title":"种内和种间重组率变异的遗传学研究。","authors":"Bret A Payseur","doi":"10.1093/jeb/voae158","DOIUrl":null,"url":null,"abstract":"<p><p>Recombination diversifies the genomes of offspring, influences the evolutionary dynamics of populations, and ensures that chromosomes segregate properly during meiosis. Individuals recombine at different rates but observed levels of variation in recombination rate remain mostly unexplained. Genetic dissection of differences in recombination rate within and between species provides a powerful framework for understanding how this trait evolves. In this Perspective, I amalgamate published findings from genetic studies of variation in the genome-wide number of crossovers within and between species, and I use exploratory analyses to identify preliminary patterns. The narrow-sense heritability of crossover count is consistently low, indicating limited resemblance among relatives and predicting a weak response to short-term selection. Variants associated with crossover number within populations span the range of minor allele frequency. The size of the additive effect of recombination-associated variants, along with a negative correlation between this effect and minor allele frequency, raises the prospect that mutations inducing phenotypic shifts larger than a few crossovers are deleterious, though the contributions of methodological biases to these patterns deserve investigation. Quantitative trait loci that contribute to differences between populations or species alter crossover number in both directions, a pattern inconsistent with selection toward a constant optimum for this trait. Building on this characterization of genetic variation in crossover number within and between species, I describe fruitful avenues for future research. Better integrating recombination rate into quantitative genetics will reveal the balance of evolutionary forces responsible for genetic variation in this trait that shapes inheritance.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetics of Recombination Rate Variation Within and Between Species.\",\"authors\":\"Bret A Payseur\",\"doi\":\"10.1093/jeb/voae158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recombination diversifies the genomes of offspring, influences the evolutionary dynamics of populations, and ensures that chromosomes segregate properly during meiosis. Individuals recombine at different rates but observed levels of variation in recombination rate remain mostly unexplained. Genetic dissection of differences in recombination rate within and between species provides a powerful framework for understanding how this trait evolves. In this Perspective, I amalgamate published findings from genetic studies of variation in the genome-wide number of crossovers within and between species, and I use exploratory analyses to identify preliminary patterns. The narrow-sense heritability of crossover count is consistently low, indicating limited resemblance among relatives and predicting a weak response to short-term selection. Variants associated with crossover number within populations span the range of minor allele frequency. The size of the additive effect of recombination-associated variants, along with a negative correlation between this effect and minor allele frequency, raises the prospect that mutations inducing phenotypic shifts larger than a few crossovers are deleterious, though the contributions of methodological biases to these patterns deserve investigation. Quantitative trait loci that contribute to differences between populations or species alter crossover number in both directions, a pattern inconsistent with selection toward a constant optimum for this trait. Building on this characterization of genetic variation in crossover number within and between species, I describe fruitful avenues for future research. Better integrating recombination rate into quantitative genetics will reveal the balance of evolutionary forces responsible for genetic variation in this trait that shapes inheritance.</p>\",\"PeriodicalId\":50198,\"journal\":{\"name\":\"Journal of Evolutionary Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolutionary Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jeb/voae158\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voae158","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

重组使后代的基因组多样化,影响种群的进化动态,并确保染色体在减数分裂期间正确分离。个体重组率不同,但观察到的重组率变化水平大部分仍无法解释。对物种内和物种间重组率差异的基因解剖为理解这一特征的进化提供了一个强有力的框架。在这个观点中,我合并了已发表的关于物种内部和物种之间全基因组杂交数量变异的遗传研究结果,并使用探索性分析来确定初步模式。交叉计数的狭义遗传力一直很低,表明近亲之间的相似性有限,并预测对短期选择的反应较弱。与群体内交叉数相关的变异跨越了小等位基因频率范围。重组相关变异的加性效应的大小,以及这种效应与小等位基因频率之间的负相关,提出了一种前景,即诱导表型变化的突变大于少数交叉是有害的,尽管方法学偏差对这些模式的贡献值得研究。导致种群或物种间差异的数量性状位点在两个方向上都改变了交叉数量,这种模式与选择该性状的恒定最优不一致。基于这种物种内部和物种之间交叉数遗传变异的特征,我描述了未来研究的富有成效的途径。将重组率更好地整合到定量遗传学中,将揭示导致这种性状遗传变异的进化力量的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetics of Recombination Rate Variation Within and Between Species.

Recombination diversifies the genomes of offspring, influences the evolutionary dynamics of populations, and ensures that chromosomes segregate properly during meiosis. Individuals recombine at different rates but observed levels of variation in recombination rate remain mostly unexplained. Genetic dissection of differences in recombination rate within and between species provides a powerful framework for understanding how this trait evolves. In this Perspective, I amalgamate published findings from genetic studies of variation in the genome-wide number of crossovers within and between species, and I use exploratory analyses to identify preliminary patterns. The narrow-sense heritability of crossover count is consistently low, indicating limited resemblance among relatives and predicting a weak response to short-term selection. Variants associated with crossover number within populations span the range of minor allele frequency. The size of the additive effect of recombination-associated variants, along with a negative correlation between this effect and minor allele frequency, raises the prospect that mutations inducing phenotypic shifts larger than a few crossovers are deleterious, though the contributions of methodological biases to these patterns deserve investigation. Quantitative trait loci that contribute to differences between populations or species alter crossover number in both directions, a pattern inconsistent with selection toward a constant optimum for this trait. Building on this characterization of genetic variation in crossover number within and between species, I describe fruitful avenues for future research. Better integrating recombination rate into quantitative genetics will reveal the balance of evolutionary forces responsible for genetic variation in this trait that shapes inheritance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Journal of Evolutionary Biology
Journal of Evolutionary Biology 生物-进化生物学
CiteScore
4.20
自引率
4.80%
发文量
152
审稿时长
3-6 weeks
期刊介绍: It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.
期刊最新文献
Non-random sorting of parental chemical compounds during hybrid speciation. A XY chromosome system in Laurus azorica, an endemic dioecious laurel from the Azores. Increases in predation favor evolutionary shifts in behavioral plasticity in Trinidadian killifish (Anablepsoides hartii). Decoding Dmrt1: Insights into vertebrate sex determination and gonadal sex differentiation. Genetic and habitat complexity effects on unpredictability in escape behavior of a grasshopper species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1