了解多晶镁在拉伸和压缩条件下孪晶变体的活化和生长:原子研究

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2024-12-17 DOI:10.1016/j.jma.2024.12.007
Huicong Chen, Cheng Chen, Jun Song, Stephen Yue
{"title":"了解多晶镁在拉伸和压缩条件下孪晶变体的活化和生长:原子研究","authors":"Huicong Chen, Cheng Chen, Jun Song, Stephen Yue","doi":"10.1016/j.jma.2024.12.007","DOIUrl":null,"url":null,"abstract":"Deformation twinning is known to be important in the acquisition of plasticity for hexagonal close-packed crystal structures, of great implication to the design and development of novel high-strength Mg alloys with enhanced formability. Accurate understanding of deformation twinning necessitates critical mechanistic knowledge of the activation and selection of twins at nanoscale. In this work, considering polycrystalline Mg, we performed comprehensive molecular dynamics simulations to investigate deformation twinning under uniaxial tension and compression loading. An algorithm has been developed and implemented to identify the active twin variants of three operating twin modes during deformation. Sharp contrast between tension and compression loading in terms of twin patterns and twin growth was observed, attributed to difference in twin variant activation and twin-twin interaction under the two loading conditions. Furthermore, the critical role of Schmid factor in twin variant activation and selection has been elucidated, in good agreement with experimental observations. This study contributes critical insights towards advancing our understanding of the complex behaviors of deformation twinning in polycrystalline Mg.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"30 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding activation and growth of twin variants in polycrystalline magnesium under tension and compression: An atomistic study\",\"authors\":\"Huicong Chen, Cheng Chen, Jun Song, Stephen Yue\",\"doi\":\"10.1016/j.jma.2024.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deformation twinning is known to be important in the acquisition of plasticity for hexagonal close-packed crystal structures, of great implication to the design and development of novel high-strength Mg alloys with enhanced formability. Accurate understanding of deformation twinning necessitates critical mechanistic knowledge of the activation and selection of twins at nanoscale. In this work, considering polycrystalline Mg, we performed comprehensive molecular dynamics simulations to investigate deformation twinning under uniaxial tension and compression loading. An algorithm has been developed and implemented to identify the active twin variants of three operating twin modes during deformation. Sharp contrast between tension and compression loading in terms of twin patterns and twin growth was observed, attributed to difference in twin variant activation and twin-twin interaction under the two loading conditions. Furthermore, the critical role of Schmid factor in twin variant activation and selection has been elucidated, in good agreement with experimental observations. This study contributes critical insights towards advancing our understanding of the complex behaviors of deformation twinning in polycrystalline Mg.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2024.12.007\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.12.007","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

变形孪晶是六方密排晶体结构获得塑性的重要因素,对设计和开发具有增强成形性的新型高强度镁合金具有重要意义。形变孪晶的准确理解需要在纳米尺度上激活和选择孪晶的关键机理知识。在这项工作中,考虑到多晶Mg,我们进行了全面的分子动力学模拟,以研究单轴拉伸和压缩载荷下的变形孪晶。开发并实现了一种算法,用于识别变形过程中三种工作双模态的活动双模变异体。拉伸和压缩载荷在孪晶模式和孪晶生长方面存在明显差异,这是由于两种载荷条件下孪晶变异激活和孪晶相互作用的差异。此外,还阐明了Schmid因子在双胞胎变异激活和选择中的关键作用,与实验结果一致。本研究对推进我们对多晶Mg中变形孪晶的复杂行为的理解有重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding activation and growth of twin variants in polycrystalline magnesium under tension and compression: An atomistic study
Deformation twinning is known to be important in the acquisition of plasticity for hexagonal close-packed crystal structures, of great implication to the design and development of novel high-strength Mg alloys with enhanced formability. Accurate understanding of deformation twinning necessitates critical mechanistic knowledge of the activation and selection of twins at nanoscale. In this work, considering polycrystalline Mg, we performed comprehensive molecular dynamics simulations to investigate deformation twinning under uniaxial tension and compression loading. An algorithm has been developed and implemented to identify the active twin variants of three operating twin modes during deformation. Sharp contrast between tension and compression loading in terms of twin patterns and twin growth was observed, attributed to difference in twin variant activation and twin-twin interaction under the two loading conditions. Furthermore, the critical role of Schmid factor in twin variant activation and selection has been elucidated, in good agreement with experimental observations. This study contributes critical insights towards advancing our understanding of the complex behaviors of deformation twinning in polycrystalline Mg.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Spatial mapping of the localized corrosion behavior of a magnesium alloy AZ31B tungsten inert gas weld An overview of RE-Mg-based alloys for hydrogen storage: Structure, properties, progresses and perspectives Direct bonding of AZ31B and ZrO2 induced by interfacial sono-oxidation reaction at a low temperature From macro-, through meso- to micro-scale: Densification behavior, deformation response and microstructural evolution of selective laser melted Mg-RE alloy Enhanced high-temperature strength of a Mg-4Sn-3Al-1 Zn alloy with good thermal stability via Mg2Sn precipitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1