日粮果胶的结构与降解动力学。

IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Critical reviews in food science and nutrition Pub Date : 2024-12-16 DOI:10.1080/10408398.2024.2437573
Ecem Yüksel, Remco Kort, Alphons G J Voragen
{"title":"日粮果胶的结构与降解动力学。","authors":"Ecem Yüksel, Remco Kort, Alphons G J Voragen","doi":"10.1080/10408398.2024.2437573","DOIUrl":null,"url":null,"abstract":"<p><p>Pectin, a complex dietary fiber, constitutes a key structural component of the cell walls of numerous edible plant products. It is resistant to digestion by human enzymes and undergoes depolymerization and saccharification in the gastrointestinal tract through the action of carbohydrate-active enzymes (CAZymes) produced by gut microbiota. This enzymatic breakdown generates intermediate structural fragments, which are subsequently converted into pectin oligosaccharides (POS) and monosaccharides. POS exhibit prebiotic properties and have demonstrated potential health benefits, including anti-carcinogenic effects, mucoadhesive capabilities, and the promotion of beneficial gut bacterial growth. However, the current understanding of the molecular structure of pectin and its degradation dynamics remains fragmented within the literature, impeding progress in dietary fiber intervention research and the development of personalized nutrition approaches. This review aims to provide a comprehensive overview of the structural features of pectin and the intricate breakdown mechanisms orchestrated by CAZymes. It underscores the complex architecture of pectin that influences its breakdown dynamics and specifies the enzymatic requirements for the cleavage of its diverse structural components. These insights complement our accompanying review on the structure-function relationships between pectin and the human gut microbiota, previously published in this journal.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-20"},"PeriodicalIF":7.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and degradation dynamics of dietary pectin.\",\"authors\":\"Ecem Yüksel, Remco Kort, Alphons G J Voragen\",\"doi\":\"10.1080/10408398.2024.2437573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pectin, a complex dietary fiber, constitutes a key structural component of the cell walls of numerous edible plant products. It is resistant to digestion by human enzymes and undergoes depolymerization and saccharification in the gastrointestinal tract through the action of carbohydrate-active enzymes (CAZymes) produced by gut microbiota. This enzymatic breakdown generates intermediate structural fragments, which are subsequently converted into pectin oligosaccharides (POS) and monosaccharides. POS exhibit prebiotic properties and have demonstrated potential health benefits, including anti-carcinogenic effects, mucoadhesive capabilities, and the promotion of beneficial gut bacterial growth. However, the current understanding of the molecular structure of pectin and its degradation dynamics remains fragmented within the literature, impeding progress in dietary fiber intervention research and the development of personalized nutrition approaches. This review aims to provide a comprehensive overview of the structural features of pectin and the intricate breakdown mechanisms orchestrated by CAZymes. It underscores the complex architecture of pectin that influences its breakdown dynamics and specifies the enzymatic requirements for the cleavage of its diverse structural components. These insights complement our accompanying review on the structure-function relationships between pectin and the human gut microbiota, previously published in this journal.</p>\",\"PeriodicalId\":10767,\"journal\":{\"name\":\"Critical reviews in food science and nutrition\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in food science and nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10408398.2024.2437573\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2024.2437573","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

果胶是一种复杂的膳食纤维,是许多可食用植物产品细胞壁的关键结构成分。它抵抗人体酶的消化,并通过肠道菌群产生的碳水化合物活性酶(CAZymes)的作用在胃肠道中解聚和糖化。这种酶分解产生中间结构片段,随后转化为果胶寡糖(POS)和单糖。POS具有益生元特性,并已证明具有潜在的健康益处,包括抗癌作用、黏附能力和促进有益肠道细菌生长。然而,目前对果胶分子结构及其降解动力学的理解在文献中仍然是碎片化的,阻碍了膳食纤维干预研究和个性化营养方法的发展。本文旨在全面介绍果胶的结构特征和CAZymes介导的复杂分解机制。它强调了果胶的复杂结构,影响其分解动力学,并规定了其多种结构成分的切割酶的要求。这些见解补充了我们之前在该杂志上发表的关于果胶和人类肠道微生物群之间结构-功能关系的评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure and degradation dynamics of dietary pectin.

Pectin, a complex dietary fiber, constitutes a key structural component of the cell walls of numerous edible plant products. It is resistant to digestion by human enzymes and undergoes depolymerization and saccharification in the gastrointestinal tract through the action of carbohydrate-active enzymes (CAZymes) produced by gut microbiota. This enzymatic breakdown generates intermediate structural fragments, which are subsequently converted into pectin oligosaccharides (POS) and monosaccharides. POS exhibit prebiotic properties and have demonstrated potential health benefits, including anti-carcinogenic effects, mucoadhesive capabilities, and the promotion of beneficial gut bacterial growth. However, the current understanding of the molecular structure of pectin and its degradation dynamics remains fragmented within the literature, impeding progress in dietary fiber intervention research and the development of personalized nutrition approaches. This review aims to provide a comprehensive overview of the structural features of pectin and the intricate breakdown mechanisms orchestrated by CAZymes. It underscores the complex architecture of pectin that influences its breakdown dynamics and specifies the enzymatic requirements for the cleavage of its diverse structural components. These insights complement our accompanying review on the structure-function relationships between pectin and the human gut microbiota, previously published in this journal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.60
自引率
4.90%
发文量
600
审稿时长
7.5 months
期刊介绍: Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition. With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.
期刊最新文献
Innovative approaches for enzyme immobilization in milk processing: advancements and industrial applications. Digestion of food proteins: the role of pepsin. The ant that may well destroy a whole dam: a systematic review of the health implication of nanoplastics/microplastics through gut microbiota. The impact of oleuropein, hydroxytyrosol, and tyrosol on cardiometabolic risk factors: a meta-analysis of randomized controlled trials. Recent updates on plant protein-based dairy cheese alternatives: outlook and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1