新生儿脑损伤引发细胞生物地理学的特定生态位变化。

IF 2.7 3区 医学 Q3 NEUROSCIENCES eNeuro Pub Date : 2024-12-26 Print Date: 2024-12-01 DOI:10.1523/ENEURO.0224-24.2024
Nareh Tahmasian, Min Yi Feng, Keon Arbabi, Bianca Rusu, Wuxinhao Cao, Bharti Kukreja, Asael Lubotzky, Michael Wainberg, Shreejoy J Tripathy, Brian T Kalish
{"title":"新生儿脑损伤引发细胞生物地理学的特定生态位变化。","authors":"Nareh Tahmasian, Min Yi Feng, Keon Arbabi, Bianca Rusu, Wuxinhao Cao, Bharti Kukreja, Asael Lubotzky, Michael Wainberg, Shreejoy J Tripathy, Brian T Kalish","doi":"10.1523/ENEURO.0224-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Preterm infants are at risk for brain injury and neurodevelopmental impairment due, in part, to white matter injury following chronic hypoxia exposure. However, the precise molecular mechanisms by which neonatal hypoxia disrupts early neurodevelopment are poorly understood. Here, we constructed a brain-wide map of the regenerative response to newborn brain injury using high-resolution imaging-based spatial transcriptomics to analyze over 800,000 cells in a mouse model of chronic neonatal hypoxia. Additionally, we developed a new method for inferring condition-associated differences in cell type spatial proximity, enabling the identification of niche-specific changes in cellular architecture. We observed hypoxia-associated changes in region-specific cell states, cell type composition, and spatial organization. Importantly, our analysis revealed mechanisms underlying reparative neurogenesis and gliogenesis, while also nominating pathways that may impede circuit rewiring following neonatal hypoxia. Altogether, our work provides a comprehensive description of the molecular response to newborn brain injury.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680506/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neonatal Brain Injury Triggers Niche-Specific Changes to Cellular Biogeography.\",\"authors\":\"Nareh Tahmasian, Min Yi Feng, Keon Arbabi, Bianca Rusu, Wuxinhao Cao, Bharti Kukreja, Asael Lubotzky, Michael Wainberg, Shreejoy J Tripathy, Brian T Kalish\",\"doi\":\"10.1523/ENEURO.0224-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Preterm infants are at risk for brain injury and neurodevelopmental impairment due, in part, to white matter injury following chronic hypoxia exposure. However, the precise molecular mechanisms by which neonatal hypoxia disrupts early neurodevelopment are poorly understood. Here, we constructed a brain-wide map of the regenerative response to newborn brain injury using high-resolution imaging-based spatial transcriptomics to analyze over 800,000 cells in a mouse model of chronic neonatal hypoxia. Additionally, we developed a new method for inferring condition-associated differences in cell type spatial proximity, enabling the identification of niche-specific changes in cellular architecture. We observed hypoxia-associated changes in region-specific cell states, cell type composition, and spatial organization. Importantly, our analysis revealed mechanisms underlying reparative neurogenesis and gliogenesis, while also nominating pathways that may impede circuit rewiring following neonatal hypoxia. Altogether, our work provides a comprehensive description of the molecular response to newborn brain injury.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680506/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0224-24.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0224-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

早产儿有脑损伤和神经发育障碍的风险,部分原因是长期缺氧后白质损伤。然而,新生儿缺氧破坏早期神经发育的确切分子机制尚不清楚。在这里,我们使用基于高分辨率成像的空间转录组学构建了新生儿脑损伤再生反应的全脑图谱,分析了慢性新生儿缺氧小鼠模型中的80多万个细胞。此外,我们开发了一种新的方法来推断细胞类型空间接近的条件相关差异,从而能够识别细胞结构中特定生态位的变化。我们观察到与缺氧相关的区域特异性细胞状态、细胞类型组成和空间组织的变化。重要的是,我们的分析揭示了修复性神经发生和神经胶质瘤发生的机制,同时也指出了新生儿缺氧后可能阻碍电路重新布线的途径。总之,我们的工作提供了对新生儿脑损伤的分子反应的全面描述。早产儿有白质损伤和大脑发育异常的风险,易导致终身神经损伤。在这里,我们使用了一个模拟早产儿脑损伤的慢性新生儿缺氧小鼠模型,并使用多路错误-鲁强荧光原位杂交(MERFISH)进行了高分辨率空间转录组学。我们开发了一种新的方法来绘制细胞-细胞关系,揭示了新生儿脑损伤后细胞组织的深刻变化。我们定义了细胞通信网络和信号通路,可能有助于缺氧反应性神经发生和胶质瘤发生,以及可能破坏神经恢复和修复的细胞和区域特异性因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neonatal Brain Injury Triggers Niche-Specific Changes to Cellular Biogeography.

Preterm infants are at risk for brain injury and neurodevelopmental impairment due, in part, to white matter injury following chronic hypoxia exposure. However, the precise molecular mechanisms by which neonatal hypoxia disrupts early neurodevelopment are poorly understood. Here, we constructed a brain-wide map of the regenerative response to newborn brain injury using high-resolution imaging-based spatial transcriptomics to analyze over 800,000 cells in a mouse model of chronic neonatal hypoxia. Additionally, we developed a new method for inferring condition-associated differences in cell type spatial proximity, enabling the identification of niche-specific changes in cellular architecture. We observed hypoxia-associated changes in region-specific cell states, cell type composition, and spatial organization. Importantly, our analysis revealed mechanisms underlying reparative neurogenesis and gliogenesis, while also nominating pathways that may impede circuit rewiring following neonatal hypoxia. Altogether, our work provides a comprehensive description of the molecular response to newborn brain injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
期刊最新文献
Hawkmoth Pheromone Transduction Involves G-Protein-Dependent Phospholipase Cβ Signaling. A Common Stay-on-Goal Mechanism in the Anterior Cingulate Cortex for Information and Effort Choices. Semicircular Canals Input Can Modify the Fast-Phase Nystagmus in Off-Vertical Axis Rotation of Mice. Detection of Mitotic Neuroblasts Provides Additional Evidence of Steady-State Neurogenesis in the Adult Small Intestinal Myenteric Plexus. Continuous Auditory Feedback Promotes Fine Motor Skill Learning in Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1