退火过程中侧壁铜晶粒状况对 TSV 热机械行为的影响。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2024-12-16 DOI:10.1038/s41378-024-00830-1
Yang Xi, Yunpeng Zhang, Zhiqaing Tian, Tianjian Liu, Can Sheng, Bo Zhao, Zhaofu Zhang, Shizhao Wang, Sheng Liu
{"title":"退火过程中侧壁铜晶粒状况对 TSV 热机械行为的影响。","authors":"Yang Xi, Yunpeng Zhang, Zhiqaing Tian, Tianjian Liu, Can Sheng, Bo Zhao, Zhaofu Zhang, Shizhao Wang, Sheng Liu","doi":"10.1038/s41378-024-00830-1","DOIUrl":null,"url":null,"abstract":"<p><p>With the drastic reduction of the TSV diameter leading to a critical dimension comparable to the Cu-filled grain size, the grain condition strongly influences the thermo-mechanical behavior of the TSV. In this work, the TSV-Cu cross-section with different grain sizes is characterized by EBSD, confirming that the sidewall grain size (0.638-1.580 μm) is smaller compared to other regions (1.022-2.134 μm). A finite element model (FEM) considering copper grains is constructed by using Voronoi diagrams to investigate the effect of sidewall grain size as well as area on the thermo-mechanical behavior during annealing. The material parameters in the FEM are optimized through nanoindentation inversion and considering the mechanical property anisotropy of copper grains. The yield strength σ<sub>y</sub> and hardening exponent n of TSV-Cu are 74.6 MPa and 0.514. The simulation results indicate that the protrusion of TSV-Cu after annealing tends to increase initially and then decrease with smaller sidewall grain size and area. The maximum increase in protrusion caused by the two variables can reach 6.74% and 14.6%, respectively, relative to the average grain condition. Additionally, the simulation results were validated by quantifying grain boundaries in TSV-Cu samples with varying grain sizes.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"194"},"PeriodicalIF":7.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649699/pdf/","citationCount":"0","resultStr":"{\"title\":\"The impact of sidewall copper grain condition on thermo-mechanical behaviors of TSVs during the annealing process.\",\"authors\":\"Yang Xi, Yunpeng Zhang, Zhiqaing Tian, Tianjian Liu, Can Sheng, Bo Zhao, Zhaofu Zhang, Shizhao Wang, Sheng Liu\",\"doi\":\"10.1038/s41378-024-00830-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the drastic reduction of the TSV diameter leading to a critical dimension comparable to the Cu-filled grain size, the grain condition strongly influences the thermo-mechanical behavior of the TSV. In this work, the TSV-Cu cross-section with different grain sizes is characterized by EBSD, confirming that the sidewall grain size (0.638-1.580 μm) is smaller compared to other regions (1.022-2.134 μm). A finite element model (FEM) considering copper grains is constructed by using Voronoi diagrams to investigate the effect of sidewall grain size as well as area on the thermo-mechanical behavior during annealing. The material parameters in the FEM are optimized through nanoindentation inversion and considering the mechanical property anisotropy of copper grains. The yield strength σ<sub>y</sub> and hardening exponent n of TSV-Cu are 74.6 MPa and 0.514. The simulation results indicate that the protrusion of TSV-Cu after annealing tends to increase initially and then decrease with smaller sidewall grain size and area. The maximum increase in protrusion caused by the two variables can reach 6.74% and 14.6%, respectively, relative to the average grain condition. Additionally, the simulation results were validated by quantifying grain boundaries in TSV-Cu samples with varying grain sizes.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"194\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649699/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00830-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00830-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

随着TSV直径的急剧减小,达到与cu填充晶粒尺寸相当的临界尺寸,晶粒条件对TSV的热力学行为有很大影响。本文对不同晶粒尺寸的TSV-Cu横截面进行了EBSD表征,证实了边壁晶粒尺寸(0.638 ~ 1.580 μm)小于其他区域(1.022 ~ 2.134 μm)。利用Voronoi图建立了考虑铜晶粒的有限元模型,研究了侧壁晶粒尺寸和面积对退火过程热力学行为的影响。通过纳米压痕反演,并考虑铜晶粒力学性能的各向异性,对有限元中的材料参数进行了优化。TSV-Cu合金的屈服强度σy为74.6 MPa,硬化指数n为0.514。模拟结果表明,退火后TSV-Cu的突出度随着边壁晶粒尺寸和面积的减小呈现先增大后减小的趋势;相对于平均晶粒条件,这两个变量导致的最大凸度增幅分别可达6.74%和14.6%。此外,通过对不同晶粒尺寸的TSV-Cu样品的晶界进行量化,验证了模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The impact of sidewall copper grain condition on thermo-mechanical behaviors of TSVs during the annealing process.

With the drastic reduction of the TSV diameter leading to a critical dimension comparable to the Cu-filled grain size, the grain condition strongly influences the thermo-mechanical behavior of the TSV. In this work, the TSV-Cu cross-section with different grain sizes is characterized by EBSD, confirming that the sidewall grain size (0.638-1.580 μm) is smaller compared to other regions (1.022-2.134 μm). A finite element model (FEM) considering copper grains is constructed by using Voronoi diagrams to investigate the effect of sidewall grain size as well as area on the thermo-mechanical behavior during annealing. The material parameters in the FEM are optimized through nanoindentation inversion and considering the mechanical property anisotropy of copper grains. The yield strength σy and hardening exponent n of TSV-Cu are 74.6 MPa and 0.514. The simulation results indicate that the protrusion of TSV-Cu after annealing tends to increase initially and then decrease with smaller sidewall grain size and area. The maximum increase in protrusion caused by the two variables can reach 6.74% and 14.6%, respectively, relative to the average grain condition. Additionally, the simulation results were validated by quantifying grain boundaries in TSV-Cu samples with varying grain sizes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
A low-cost printed circuit board-based centrifugal microfluidic platform for dielectrophoresis. Fully automated in vivo screening system for multi-organ imaging and pharmaceutical evaluation. Controllable tip exposure of ultramicroelectrodes coated by diamond-like carbon via direct microplasma jet for enhanced stability and fidelity in single-cell recording. Theoretical and experimental investigations of the CMOS compatible Pirani gauges with a temperature compensation model. An intelligent humidity sensing system for human behavior recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1