Zaimei He, Ji Xiong, Xianghai Yu, Yi Wang, Yiran Cheng, Yonghong Zhou, Houyang Kang, Jian Zeng
{"title":"根瘤菌群落动态影响小麦在镉污染土壤中的适应性生长","authors":"Zaimei He, Ji Xiong, Xianghai Yu, Yi Wang, Yiran Cheng, Yonghong Zhou, Houyang Kang, Jian Zeng","doi":"10.1007/s12298-024-01532-8","DOIUrl":null,"url":null,"abstract":"<p><p>Soil cadmium (Cd) contamination in agriculture has intensified due to industrial development and human activities, which seriously affected the safety production in wheat. There are increasing evidences that rhizosphere bacteria contributed to alleviating Cd stress in plants, but the mechanism of how rhizosphere bacteria affecting the adaptive growth of wheat exposed to Cd contamination has not been extensively explored. Therefore, the rhizosphere bacterial community dynamics and plant growth for wheat were investigated under different levels of soil Cd contamination in accordance with risk control standard for soil contamination of agricultural land. The results showed that there was no significant difference in transport coefficient of Cd in wheat plants grown in different levels of soil Cd contamination conditions. Soil Cd contamination led to a decrease in soil pH value and an increase in exchangeable Cd content in rhizosphere soil. Although rhizosphere bacterial richness and diversity had no significant difference between soil Cd contamination conditions, as its community composition changed significantly. Under Cd contamination of risk screening value, Actinobacteria, Chloroflexi, and Nitrospira showed higher abundance, but Bacteroidetes, Patescibacteria, Sphingomonas, ADurbBin063-1 and Bryobacter were more prevalent under Cd contamination of risk intervention value. The enrichment of Patescibacteria, Proteobacteria and Acidobacteria was beneficial for Cd fixation, while Nitrospira enhanced nutrient uptake and utilization. Furthermore, Cd contamination with risk screening value enhanced the relationship among rhizosphere bacterial communities, and Cd contamination with risk intervention value increased the cooperative relationship among rhizosphere bacterial species. Additionally, soil Cd content showed a significantly positive correlation with Patescibacteria and ADurbBin063-1, and a significantly negative correlation with pH. Altogether, the shift in the community structures of rhizosphere bacterial was crucial for farmland protection and food safety in Cd polluted soil.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-024-01532-8.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"30 11","pages":"1841-1852"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646259/pdf/","citationCount":"0","resultStr":"{\"title\":\"Community dynamics in rhizosphere bacteria affected the adaptive growth of wheat in cadmium-contaminated soils.\",\"authors\":\"Zaimei He, Ji Xiong, Xianghai Yu, Yi Wang, Yiran Cheng, Yonghong Zhou, Houyang Kang, Jian Zeng\",\"doi\":\"10.1007/s12298-024-01532-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil cadmium (Cd) contamination in agriculture has intensified due to industrial development and human activities, which seriously affected the safety production in wheat. There are increasing evidences that rhizosphere bacteria contributed to alleviating Cd stress in plants, but the mechanism of how rhizosphere bacteria affecting the adaptive growth of wheat exposed to Cd contamination has not been extensively explored. Therefore, the rhizosphere bacterial community dynamics and plant growth for wheat were investigated under different levels of soil Cd contamination in accordance with risk control standard for soil contamination of agricultural land. The results showed that there was no significant difference in transport coefficient of Cd in wheat plants grown in different levels of soil Cd contamination conditions. Soil Cd contamination led to a decrease in soil pH value and an increase in exchangeable Cd content in rhizosphere soil. Although rhizosphere bacterial richness and diversity had no significant difference between soil Cd contamination conditions, as its community composition changed significantly. Under Cd contamination of risk screening value, Actinobacteria, Chloroflexi, and Nitrospira showed higher abundance, but Bacteroidetes, Patescibacteria, Sphingomonas, ADurbBin063-1 and Bryobacter were more prevalent under Cd contamination of risk intervention value. The enrichment of Patescibacteria, Proteobacteria and Acidobacteria was beneficial for Cd fixation, while Nitrospira enhanced nutrient uptake and utilization. Furthermore, Cd contamination with risk screening value enhanced the relationship among rhizosphere bacterial communities, and Cd contamination with risk intervention value increased the cooperative relationship among rhizosphere bacterial species. Additionally, soil Cd content showed a significantly positive correlation with Patescibacteria and ADurbBin063-1, and a significantly negative correlation with pH. Altogether, the shift in the community structures of rhizosphere bacterial was crucial for farmland protection and food safety in Cd polluted soil.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-024-01532-8.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"30 11\",\"pages\":\"1841-1852\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646259/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-024-01532-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01532-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Community dynamics in rhizosphere bacteria affected the adaptive growth of wheat in cadmium-contaminated soils.
Soil cadmium (Cd) contamination in agriculture has intensified due to industrial development and human activities, which seriously affected the safety production in wheat. There are increasing evidences that rhizosphere bacteria contributed to alleviating Cd stress in plants, but the mechanism of how rhizosphere bacteria affecting the adaptive growth of wheat exposed to Cd contamination has not been extensively explored. Therefore, the rhizosphere bacterial community dynamics and plant growth for wheat were investigated under different levels of soil Cd contamination in accordance with risk control standard for soil contamination of agricultural land. The results showed that there was no significant difference in transport coefficient of Cd in wheat plants grown in different levels of soil Cd contamination conditions. Soil Cd contamination led to a decrease in soil pH value and an increase in exchangeable Cd content in rhizosphere soil. Although rhizosphere bacterial richness and diversity had no significant difference between soil Cd contamination conditions, as its community composition changed significantly. Under Cd contamination of risk screening value, Actinobacteria, Chloroflexi, and Nitrospira showed higher abundance, but Bacteroidetes, Patescibacteria, Sphingomonas, ADurbBin063-1 and Bryobacter were more prevalent under Cd contamination of risk intervention value. The enrichment of Patescibacteria, Proteobacteria and Acidobacteria was beneficial for Cd fixation, while Nitrospira enhanced nutrient uptake and utilization. Furthermore, Cd contamination with risk screening value enhanced the relationship among rhizosphere bacterial communities, and Cd contamination with risk intervention value increased the cooperative relationship among rhizosphere bacterial species. Additionally, soil Cd content showed a significantly positive correlation with Patescibacteria and ADurbBin063-1, and a significantly negative correlation with pH. Altogether, the shift in the community structures of rhizosphere bacterial was crucial for farmland protection and food safety in Cd polluted soil.
Supplementary information: The online version contains supplementary material available at 10.1007/s12298-024-01532-8.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.