Natália Noronha Ferreira, Celisnolia Morais Leite, Natália Sanchez Moreno, Renata Rank Miranda, Paula Maria Pincela Lins, Camila Fernanda Rodero, Edilson de Oliveira Junior, Eliana Martins Lima, Rui M. Reis, Valtencir Zucolotto
{"title":"Nose-to-Brain Delivery of Biomimetic Nanoparticles for Glioblastoma Targeted Therapy","authors":"Natália Noronha Ferreira, Celisnolia Morais Leite, Natália Sanchez Moreno, Renata Rank Miranda, Paula Maria Pincela Lins, Camila Fernanda Rodero, Edilson de Oliveira Junior, Eliana Martins Lima, Rui M. Reis, Valtencir Zucolotto","doi":"10.1021/acsami.4c16837","DOIUrl":null,"url":null,"abstract":"Glioblastoma (GBM) is an extremely aggressive form of brain cancer that remains challenging to treat, especially owing to the lack of effective targeting and drug delivery concerns. Due to its anatomical advantages, the nose-to-brain strategy is an interesting route for drug delivery. Nanoengineering has provided technological tools and innovative strategies to overcome biotechnological limitations, which is promising for improving the effectiveness of conventional therapies. Herein, we designed a biomimetic multifunctional nanostructure produced by polymeric poly(<span>d,l</span>-lactic-<i>co</i>-glycolic) acid (PLGA) core loaded with Temozolomide (TMZ) coated with cell membrane isolated from glioma cancer cells. The developed nanostructures (NP-MB) were fully characterized, and their biological performance was investigated extensively. The results indicate that NP-MB could control TMZ release and promote TMZ permeation in the <i>ex vivo</i> nasal porcine mucosa. The higher cytotoxicity of NP-MB in different glioma cell lines, particularly against U251 cells, reinforces their potential for homotypic targeting. The chicken chorioallantoic membrane assay revealed a tumor size reduction and antiangiogenic activity. <i>In vivo</i> biodistribution studies showed that NP-MB effectively reaches the brain following nasal administration. These findings suggest that NP-MB holds promise as a biomimetic nanoplatform for effective targeting and homotypic recognition in GBM therapy with high potential for clinical translation.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"12 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16837","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nose-to-Brain Delivery of Biomimetic Nanoparticles for Glioblastoma Targeted Therapy
Glioblastoma (GBM) is an extremely aggressive form of brain cancer that remains challenging to treat, especially owing to the lack of effective targeting and drug delivery concerns. Due to its anatomical advantages, the nose-to-brain strategy is an interesting route for drug delivery. Nanoengineering has provided technological tools and innovative strategies to overcome biotechnological limitations, which is promising for improving the effectiveness of conventional therapies. Herein, we designed a biomimetic multifunctional nanostructure produced by polymeric poly(d,l-lactic-co-glycolic) acid (PLGA) core loaded with Temozolomide (TMZ) coated with cell membrane isolated from glioma cancer cells. The developed nanostructures (NP-MB) were fully characterized, and their biological performance was investigated extensively. The results indicate that NP-MB could control TMZ release and promote TMZ permeation in the ex vivo nasal porcine mucosa. The higher cytotoxicity of NP-MB in different glioma cell lines, particularly against U251 cells, reinforces their potential for homotypic targeting. The chicken chorioallantoic membrane assay revealed a tumor size reduction and antiangiogenic activity. In vivo biodistribution studies showed that NP-MB effectively reaches the brain following nasal administration. These findings suggest that NP-MB holds promise as a biomimetic nanoplatform for effective targeting and homotypic recognition in GBM therapy with high potential for clinical translation.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.