Yang Fu;Zixu Ren;Shurong Wei;Lingling Huang;Fangxing Li;Yang Liu
{"title":"考虑多点共耦合的基于强化学习的海上风电场动态最优潮流方法","authors":"Yang Fu;Zixu Ren;Shurong Wei;Lingling Huang;Fangxing Li;Yang Liu","doi":"10.35833/MPCE.2023.000765","DOIUrl":null,"url":null,"abstract":"The widespread adoption of renewable energy sources presents significant challenges for power system dispatching. This paper proposes a dynamic optimal power flow (DOPF) method based on reinforcement learning (RL) to address the dispatching challenges. The proposed method considers a scenario where large-scale offshore wind farms are inter-connected and have access to an onshore power grid through multiple points of common coupling (PCCs). First, the operational area model of the offshore power grid at the PCCs is established by combining the prediction results and the transmission capacity limit of the offshore power grid. Built upon this, a dynamic optimization model of the power system and its RL environment are constructed with the consideration of offshore power dispatching constraints. Then, an improved algorithm based on the conditional generative adversarial network (CGAN) and the soft actor-critic (SAC) algorithm is proposed. By analyzing an improved IEEE 118-node example, the proposed method proves to have the advantage of economy over a longer timescale. The resulting strategy satisfies power system operation constraints, effectively addressing the constraint problem of action space of RL, and it has the added benefit of faster solution speeds.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1749-1759"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541887","citationCount":"0","resultStr":"{\"title\":\"Dynamic Optimal Power Flow Method Based on Reinforcement Learning for Offshore Wind Farms Considering Multiple Points of Common Coupling\",\"authors\":\"Yang Fu;Zixu Ren;Shurong Wei;Lingling Huang;Fangxing Li;Yang Liu\",\"doi\":\"10.35833/MPCE.2023.000765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread adoption of renewable energy sources presents significant challenges for power system dispatching. This paper proposes a dynamic optimal power flow (DOPF) method based on reinforcement learning (RL) to address the dispatching challenges. The proposed method considers a scenario where large-scale offshore wind farms are inter-connected and have access to an onshore power grid through multiple points of common coupling (PCCs). First, the operational area model of the offshore power grid at the PCCs is established by combining the prediction results and the transmission capacity limit of the offshore power grid. Built upon this, a dynamic optimization model of the power system and its RL environment are constructed with the consideration of offshore power dispatching constraints. Then, an improved algorithm based on the conditional generative adversarial network (CGAN) and the soft actor-critic (SAC) algorithm is proposed. By analyzing an improved IEEE 118-node example, the proposed method proves to have the advantage of economy over a longer timescale. The resulting strategy satisfies power system operation constraints, effectively addressing the constraint problem of action space of RL, and it has the added benefit of faster solution speeds.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"12 6\",\"pages\":\"1749-1759\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541887\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10541887/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10541887/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamic Optimal Power Flow Method Based on Reinforcement Learning for Offshore Wind Farms Considering Multiple Points of Common Coupling
The widespread adoption of renewable energy sources presents significant challenges for power system dispatching. This paper proposes a dynamic optimal power flow (DOPF) method based on reinforcement learning (RL) to address the dispatching challenges. The proposed method considers a scenario where large-scale offshore wind farms are inter-connected and have access to an onshore power grid through multiple points of common coupling (PCCs). First, the operational area model of the offshore power grid at the PCCs is established by combining the prediction results and the transmission capacity limit of the offshore power grid. Built upon this, a dynamic optimization model of the power system and its RL environment are constructed with the consideration of offshore power dispatching constraints. Then, an improved algorithm based on the conditional generative adversarial network (CGAN) and the soft actor-critic (SAC) algorithm is proposed. By analyzing an improved IEEE 118-node example, the proposed method proves to have the advantage of economy over a longer timescale. The resulting strategy satisfies power system operation constraints, effectively addressing the constraint problem of action space of RL, and it has the added benefit of faster solution speeds.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.