用于低成本氧化还原液流电池的无纺沥青基碳纤维电极†。

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2024-11-15 DOI:10.1039/D4SE01124D
Abena A. Williams, Sagar V. Kanhere, Amod A. Ogale and Mark E. Roberts
{"title":"用于低成本氧化还原液流电池的无纺沥青基碳纤维电极†。","authors":"Abena A. Williams, Sagar V. Kanhere, Amod A. Ogale and Mark E. Roberts","doi":"10.1039/D4SE01124D","DOIUrl":null,"url":null,"abstract":"<p >Redox flow batteries (RFBs) are promising energy storage systems to support renewable energy sources and overcome the limitations imposed by their intermittent and unpredictable nature. As a developing technology, the cost of key components, namely the membrane, electrolyte, and electrodes, present a major hurdle to widespread integration. This work describes the performance of non-woven carbon fiber (NWCF) electrodes derived from low-cost petroleum pitch and produced using a scalable, inexpensive melt-blowing process. Compared to commercial polyacrylonitrile (PAN)-based carbon fiber felt, pitch-based carbon fibers have increased graphitic content, tensile strength, and electrical conductivity. Greenhouse gas emissions for pitch-based carbon fibers are estimated to be significantly lower than that of PAN-based carbon fibers. When RFBs with unoptimized NWCF electrodes are evaluated in zinc iodide electrolytes, the voltage and power density (83 mW cm<small><sup>−2</sup></small>) are slightly lower compared to RFBs with PAN-derived carbon felts (104 mW cm<small><sup>−2</sup></small>) @ 100 mA cm<small><sup>−2</sup></small>. RFBs fabricated with oxidized low-cost NWCF electrodes show nearly identical battery performance to those prepared with commercial PAN-derived carbon felts in vanadium electrolytes (peak power density of 137 mW cm<small><sup>−2</sup></small><em>vs.</em> 139 mW cm<small><sup>−2</sup></small>, respectively). Because of their low-cost precursor and cheaper processing methods, NWCF electrodes offer a promising solution to reducing the cost of RFB electrode materials, and with further optimization, these electrodes will likely result in improved battery performance.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 1","pages":" 198-207"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d4se01124d?page=search","citationCount":"0","resultStr":"{\"title\":\"Non-woven pitch-based carbon fiber electrodes for low-cost redox flow battery†\",\"authors\":\"Abena A. Williams, Sagar V. Kanhere, Amod A. Ogale and Mark E. Roberts\",\"doi\":\"10.1039/D4SE01124D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Redox flow batteries (RFBs) are promising energy storage systems to support renewable energy sources and overcome the limitations imposed by their intermittent and unpredictable nature. As a developing technology, the cost of key components, namely the membrane, electrolyte, and electrodes, present a major hurdle to widespread integration. This work describes the performance of non-woven carbon fiber (NWCF) electrodes derived from low-cost petroleum pitch and produced using a scalable, inexpensive melt-blowing process. Compared to commercial polyacrylonitrile (PAN)-based carbon fiber felt, pitch-based carbon fibers have increased graphitic content, tensile strength, and electrical conductivity. Greenhouse gas emissions for pitch-based carbon fibers are estimated to be significantly lower than that of PAN-based carbon fibers. When RFBs with unoptimized NWCF electrodes are evaluated in zinc iodide electrolytes, the voltage and power density (83 mW cm<small><sup>−2</sup></small>) are slightly lower compared to RFBs with PAN-derived carbon felts (104 mW cm<small><sup>−2</sup></small>) @ 100 mA cm<small><sup>−2</sup></small>. RFBs fabricated with oxidized low-cost NWCF electrodes show nearly identical battery performance to those prepared with commercial PAN-derived carbon felts in vanadium electrolytes (peak power density of 137 mW cm<small><sup>−2</sup></small><em>vs.</em> 139 mW cm<small><sup>−2</sup></small>, respectively). Because of their low-cost precursor and cheaper processing methods, NWCF electrodes offer a promising solution to reducing the cost of RFB electrode materials, and with further optimization, these electrodes will likely result in improved battery performance.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 1\",\"pages\":\" 198-207\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/se/d4se01124d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01124d\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01124d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化还原液流电池(rfb)是一种很有前途的储能系统,可以支持可再生能源,克服其间歇性和不可预测性所带来的限制。作为一项发展中的技术,膜、电解质和电极等关键部件的成本是广泛集成的主要障碍。这项工作描述了由低成本石油沥青制成的无纺布碳纤维(NWCF)电极的性能,并使用可扩展的、廉价的熔融吹制工艺生产。与商用聚丙烯腈(PAN)基碳纤维毡相比,沥青基碳纤维毡具有更高的石墨含量、抗拉强度和导电性。据估计,沥青基碳纤维的温室气体排放量明显低于pan基碳纤维。当使用未优化的NWCF电极的RFBs在碘化锌电解质中进行评估时,电压和功率密度(83 mW cm - 2)略低于使用pan衍生碳毡的RFBs (104 mW cm - 2) @ 100 mA cm - 2。使用氧化低成本NWCF电极制备的rfb的电池性能与在钒电解质中使用pan衍生碳毡制备的rfb几乎相同(峰值功率密度为137 mW cm - 2vs)。139mw cm−2)。由于其低成本的前驱体和更便宜的加工方法,NWCF电极为降低RFB电极材料的成本提供了一个有前途的解决方案,并且通过进一步优化,这些电极可能会提高电池的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-woven pitch-based carbon fiber electrodes for low-cost redox flow battery†

Redox flow batteries (RFBs) are promising energy storage systems to support renewable energy sources and overcome the limitations imposed by their intermittent and unpredictable nature. As a developing technology, the cost of key components, namely the membrane, electrolyte, and electrodes, present a major hurdle to widespread integration. This work describes the performance of non-woven carbon fiber (NWCF) electrodes derived from low-cost petroleum pitch and produced using a scalable, inexpensive melt-blowing process. Compared to commercial polyacrylonitrile (PAN)-based carbon fiber felt, pitch-based carbon fibers have increased graphitic content, tensile strength, and electrical conductivity. Greenhouse gas emissions for pitch-based carbon fibers are estimated to be significantly lower than that of PAN-based carbon fibers. When RFBs with unoptimized NWCF electrodes are evaluated in zinc iodide electrolytes, the voltage and power density (83 mW cm−2) are slightly lower compared to RFBs with PAN-derived carbon felts (104 mW cm−2) @ 100 mA cm−2. RFBs fabricated with oxidized low-cost NWCF electrodes show nearly identical battery performance to those prepared with commercial PAN-derived carbon felts in vanadium electrolytes (peak power density of 137 mW cm−2vs. 139 mW cm−2, respectively). Because of their low-cost precursor and cheaper processing methods, NWCF electrodes offer a promising solution to reducing the cost of RFB electrode materials, and with further optimization, these electrodes will likely result in improved battery performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
Back cover Correction: Photocatalytic CO2 reduction to methanol integrated with the oxidative coupling of thiols for S–X (X = S, C) bond formation over an Fe3O4/BiVO4 composite Back cover Triggering the phase transition of molybdenum di-selenide (MoSe2) 1T@2H by introducing copper (Cu+): experimental insights and DFT analysis for the hydrogen evolution reaction† The value of enhanced geothermal systems for the energy transition in California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1