减少北美大豆生产的温室气体排放

IF 25.7 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Nature Sustainability Pub Date : 2024-11-05 DOI:10.1038/s41893-024-01458-9
Tomás Della Chiesa, Daniel Northrup, Fernando E. Miguez, Sotirios V. Archontoulis, Mitchell E. Baum, Rodney T. Venterea, Bryan D. Emmett, Robert W. Malone, Javed Iqbal, Magdalena Necpalova, Michael J. Castellano
{"title":"减少北美大豆生产的温室气体排放","authors":"Tomás Della Chiesa, Daniel Northrup, Fernando E. Miguez, Sotirios V. Archontoulis, Mitchell E. Baum, Rodney T. Venterea, Bryan D. Emmett, Robert W. Malone, Javed Iqbal, Magdalena Necpalova, Michael J. Castellano","doi":"10.1038/s41893-024-01458-9","DOIUrl":null,"url":null,"abstract":"The agricultural sector is responsible for substantial amounts of greenhouse gas emissions that exacerbate climate change. Such greenhouse gas emissions from upland crops are difficult to abate because they are dominated by nitrous oxide (N2O) production from soil processes. Strategies to reduce these emissions focus on N fertilizer management, and there is a widespread assumption that legume crops, which do not receive N fertilizer, emit little N2O. Here we show that this assumption is incorrect; approximately 40% of N2O emissions from the most extensive cropping system in North America—the maize–soybean rotation—occur during the soybean phase. Yet, due to the lack of N fertilizer input, opportunities for emissions abatement from the soybean phase are unclear. Using models of cropping systems, we developed a strategy that combines cover-crop management and earlier planting of extended growth soybean varieties to reduce emissions from soybean production by 33%. These practices, which complement N fertilizer management in maize, are widely accessible and represent an immediate, climate-smart strategy to reduce nitrous oxide emissions from soybean production, thus not only contributing to climate-change mitigation but also maintaining productivity while adapting to changing weather patterns. Soil processes involved in agricultural practices emit considerable levels of nitrous oxide, which detrimentally contribute to climate change. This study explores strategies to reduce nitrous oxide emissions while maintaining crop productivity in the US maize–soybean rotational cropping system.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 12","pages":"1608-1615"},"PeriodicalIF":25.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41893-024-01458-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Reducing greenhouse gas emissions from North American soybean production\",\"authors\":\"Tomás Della Chiesa, Daniel Northrup, Fernando E. Miguez, Sotirios V. Archontoulis, Mitchell E. Baum, Rodney T. Venterea, Bryan D. Emmett, Robert W. Malone, Javed Iqbal, Magdalena Necpalova, Michael J. Castellano\",\"doi\":\"10.1038/s41893-024-01458-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The agricultural sector is responsible for substantial amounts of greenhouse gas emissions that exacerbate climate change. Such greenhouse gas emissions from upland crops are difficult to abate because they are dominated by nitrous oxide (N2O) production from soil processes. Strategies to reduce these emissions focus on N fertilizer management, and there is a widespread assumption that legume crops, which do not receive N fertilizer, emit little N2O. Here we show that this assumption is incorrect; approximately 40% of N2O emissions from the most extensive cropping system in North America—the maize–soybean rotation—occur during the soybean phase. Yet, due to the lack of N fertilizer input, opportunities for emissions abatement from the soybean phase are unclear. Using models of cropping systems, we developed a strategy that combines cover-crop management and earlier planting of extended growth soybean varieties to reduce emissions from soybean production by 33%. These practices, which complement N fertilizer management in maize, are widely accessible and represent an immediate, climate-smart strategy to reduce nitrous oxide emissions from soybean production, thus not only contributing to climate-change mitigation but also maintaining productivity while adapting to changing weather patterns. Soil processes involved in agricultural practices emit considerable levels of nitrous oxide, which detrimentally contribute to climate change. This study explores strategies to reduce nitrous oxide emissions while maintaining crop productivity in the US maize–soybean rotational cropping system.\",\"PeriodicalId\":19056,\"journal\":{\"name\":\"Nature Sustainability\",\"volume\":\"7 12\",\"pages\":\"1608-1615\"},\"PeriodicalIF\":25.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41893-024-01458-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s41893-024-01458-9\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01458-9","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

农业部门对大量加剧气候变化的温室气体排放负有责任。这种来自旱地作物的温室气体排放很难减少,因为它们主要是由土壤过程产生的一氧化二氮(N2O)所主导。减少这些排放的策略集中在氮肥管理上,人们普遍认为,豆科作物不接受氮肥,排放的N2O很少。在这里,我们证明这种假设是不正确的;在北美最广泛的种植系统——玉米-大豆轮作中,大约40%的一氧化二氮排放发生在大豆生长阶段。然而,由于缺乏氮肥投入,从大豆期开始减排的机会尚不清楚。利用种植系统模型,我们制定了一项策略,将覆盖作物管理与延长生长大豆品种的早期种植相结合,将大豆生产中的排放减少33%。这些做法是对玉米氮肥管理的补充,可广泛获取,是减少大豆生产中氧化亚氮排放的一种即时的气候智能型战略,因此不仅有助于减缓气候变化,而且在适应不断变化的天气模式的同时保持生产力。涉及农业实践的土壤过程排放大量的一氧化二氮,这对气候变化有不利影响。本研究探讨了在保持美国玉米-大豆轮作系统作物生产力的同时减少一氧化二氮排放的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing greenhouse gas emissions from North American soybean production
The agricultural sector is responsible for substantial amounts of greenhouse gas emissions that exacerbate climate change. Such greenhouse gas emissions from upland crops are difficult to abate because they are dominated by nitrous oxide (N2O) production from soil processes. Strategies to reduce these emissions focus on N fertilizer management, and there is a widespread assumption that legume crops, which do not receive N fertilizer, emit little N2O. Here we show that this assumption is incorrect; approximately 40% of N2O emissions from the most extensive cropping system in North America—the maize–soybean rotation—occur during the soybean phase. Yet, due to the lack of N fertilizer input, opportunities for emissions abatement from the soybean phase are unclear. Using models of cropping systems, we developed a strategy that combines cover-crop management and earlier planting of extended growth soybean varieties to reduce emissions from soybean production by 33%. These practices, which complement N fertilizer management in maize, are widely accessible and represent an immediate, climate-smart strategy to reduce nitrous oxide emissions from soybean production, thus not only contributing to climate-change mitigation but also maintaining productivity while adapting to changing weather patterns. Soil processes involved in agricultural practices emit considerable levels of nitrous oxide, which detrimentally contribute to climate change. This study explores strategies to reduce nitrous oxide emissions while maintaining crop productivity in the US maize–soybean rotational cropping system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Sustainability
Nature Sustainability Energy-Renewable Energy, Sustainability and the Environment
CiteScore
41.90
自引率
1.10%
发文量
159
期刊介绍: Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions. Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.
期刊最新文献
Data-driven strategies to improve nitrogen use efficiency of rice farming in South Asia Global South researchers need to focus on losses and damages Turning straw into reduced graphene oxide One-step conversion of biomass to reduced graphene oxide at room temperature Rethinking responses to the world’s water crises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1