碳清除情景下的强厄尔尼诺和拉尼娜降水-海洋表面温度敏感性

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Communications Earth & Environment Pub Date : 2024-12-19 DOI:10.1038/s43247-024-01958-8
Chao Liu, Soon-Il An, Zixiang Yan, Soong-Ki Kim, Seungmok Paik
{"title":"碳清除情景下的强厄尔尼诺和拉尼娜降水-海洋表面温度敏感性","authors":"Chao Liu, Soon-Il An, Zixiang Yan, Soong-Ki Kim, Seungmok Paik","doi":"10.1038/s43247-024-01958-8","DOIUrl":null,"url":null,"abstract":"El Niño-Southern Oscillation-induced tropical Pacific precipitation anomalies have global impacts and will intensify under greenhouse warming, but the potential for mitigating these changes is less understood. Here, we identify distinct hysteresis features in the precipitation-sea surface temperature sensitivity between strong El Niño and La Niña phases using a large ensemble carbon removal numerical simulation. The strong El Niño precipitation sensitivity exhibits a century-scale hysteretic enhancement and eastward shift, mainly due to modulated deep convection anomalies by the Intertropical Convergence Zone via cloud-longwave feedback. Instead, the strong La Niña counterpart is concentrated toward the equator, mostly in the central-western Pacific, with a shorter hysteresis period of a few decades. This primarily involves changes in shallow convection and surface thermal structures during La Niña, shaped by global warming-induced upper-ocean circulation changes. The distinct climate change regimes of strong El Niño and La Niña precipitation sensitivity hold important implications for assessing mitigation consequences. The hysteresis in precipitation-sea surface temperature sensitivity differs between strong El Niño and La Niña phases, with El Niño intensifying and shifting eastward due to deep convection, while La Niña is more equator-centered with a shorter hysteresis period, according to a large ensemble simulation of symmetric CO2 ramp-up and ramp-down pathways.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-16"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01958-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Strong El Niño and La Niña precipitation—sea surface temperature sensitivity under a carbon removal scenario\",\"authors\":\"Chao Liu, Soon-Il An, Zixiang Yan, Soong-Ki Kim, Seungmok Paik\",\"doi\":\"10.1038/s43247-024-01958-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El Niño-Southern Oscillation-induced tropical Pacific precipitation anomalies have global impacts and will intensify under greenhouse warming, but the potential for mitigating these changes is less understood. Here, we identify distinct hysteresis features in the precipitation-sea surface temperature sensitivity between strong El Niño and La Niña phases using a large ensemble carbon removal numerical simulation. The strong El Niño precipitation sensitivity exhibits a century-scale hysteretic enhancement and eastward shift, mainly due to modulated deep convection anomalies by the Intertropical Convergence Zone via cloud-longwave feedback. Instead, the strong La Niña counterpart is concentrated toward the equator, mostly in the central-western Pacific, with a shorter hysteresis period of a few decades. This primarily involves changes in shallow convection and surface thermal structures during La Niña, shaped by global warming-induced upper-ocean circulation changes. The distinct climate change regimes of strong El Niño and La Niña precipitation sensitivity hold important implications for assessing mitigation consequences. The hysteresis in precipitation-sea surface temperature sensitivity differs between strong El Niño and La Niña phases, with El Niño intensifying and shifting eastward due to deep convection, while La Niña is more equator-centered with a shorter hysteresis period, according to a large ensemble simulation of symmetric CO2 ramp-up and ramp-down pathways.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01958-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01958-8\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01958-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

厄尔尼诺Niño-Southern振荡引起的热带太平洋降水异常具有全球影响,并将在温室变暖下加剧,但人们对减轻这些变化的潜力知之甚少。在此,我们通过大型集合碳去除数值模拟发现了强El Niño和La Niña相之间的降水-海面温度敏感性的明显滞后特征。强El Niño降水敏感性表现出一个世纪尺度的滞后增强和东移,这主要是由于热带辐合带通过云-长波反馈调制了深对流异常。相反,强La Niña的对应物集中在赤道方向,主要在太平洋中西部,其滞后期较短,只有几十年。这主要涉及La Niña期间由全球变暖引起的上层海洋环流变化所塑造的浅层对流和地表热结构的变化。强El Niño和La Niña降水敏感性的不同气候变化机制对评估缓解后果具有重要意义。根据对对称CO2上升和下降路径的大型集合模拟,强El Niño期和强La Niña期降水-海面温度敏感性的滞后期存在差异,El Niño期由于深层对流而增强并向东移动,而La Niña期更偏向赤道中心,滞后期更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strong El Niño and La Niña precipitation—sea surface temperature sensitivity under a carbon removal scenario
El Niño-Southern Oscillation-induced tropical Pacific precipitation anomalies have global impacts and will intensify under greenhouse warming, but the potential for mitigating these changes is less understood. Here, we identify distinct hysteresis features in the precipitation-sea surface temperature sensitivity between strong El Niño and La Niña phases using a large ensemble carbon removal numerical simulation. The strong El Niño precipitation sensitivity exhibits a century-scale hysteretic enhancement and eastward shift, mainly due to modulated deep convection anomalies by the Intertropical Convergence Zone via cloud-longwave feedback. Instead, the strong La Niña counterpart is concentrated toward the equator, mostly in the central-western Pacific, with a shorter hysteresis period of a few decades. This primarily involves changes in shallow convection and surface thermal structures during La Niña, shaped by global warming-induced upper-ocean circulation changes. The distinct climate change regimes of strong El Niño and La Niña precipitation sensitivity hold important implications for assessing mitigation consequences. The hysteresis in precipitation-sea surface temperature sensitivity differs between strong El Niño and La Niña phases, with El Niño intensifying and shifting eastward due to deep convection, while La Niña is more equator-centered with a shorter hysteresis period, according to a large ensemble simulation of symmetric CO2 ramp-up and ramp-down pathways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
期刊最新文献
Kaolinite induces rapid authigenic mineralisation in unburied shrimps. Homo erectus adapted to steppe-desert climate extremes one million years ago. A transdisciplinary, comparative analysis reveals key risks from Arctic permafrost thaw. The active layer soils of Greenlandic permafrost areas can function as important sinks for volatile organic compounds. Revisiting the Last Ice Area projections from a high-resolution Global Earth System Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1