从氯化钾盐中直接高效地原位萃取铷

IF 25.7 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Nature Sustainability Pub Date : 2024-11-01 DOI:10.1038/s41893-024-01449-w
Xulong Chen, Wenping Hu
{"title":"从氯化钾盐中直接高效地原位萃取铷","authors":"Xulong Chen, Wenping Hu","doi":"10.1038/s41893-024-01449-w","DOIUrl":null,"url":null,"abstract":"Rubidium (Rb) is a valuable rare alkali metal that plays a crucial role in various high-tech applications, but extracting Rb from conventional sources poses sustainability challenges. A considerable amount of Rb is found in potassium chloride (KCl) salts, which can serve as a sustainable source depending on the extraction methods. Current liquid-phase methods are problematic due to the low Rb/K separation factor and high consumption of energy, water and chemicals. Extracting Rb directly from solid KCl salts is a promising approach, but achieving efficient recovery remains a challenge. Here we propose a crystal ripening microextraction strategy that enables in situ extraction of Rb from solid KCl salts with high selectivity, simplicity and high efficiency. By applying this strategy, we recovered 92.37% of Rb from KCl salts with an initial Rb content of 113 ppm. Compared with liquid-phase extraction, our approach results in a 97.57% reduction in energy consumption, a 22.24% increase in recovery efficiency and a 13.46-fold higher Rb/K separation factor, which substantially enhance environmental and economic benefits. In addition, this approach is suitable for recovering other target metals needed for various industrial applications directly from different solid metallic salts, providing a pathway to improve the sustainability of critical metal supply. Sustainably extracting rubidium (Rb), a valuable critical metal, from alternative sources remains challenging. Here the authors report a crystal ripening microextraction strategy that allows efficient Rb extraction from potassium chloride salts, with large environmental and economic benefits.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 12","pages":"1672-1680"},"PeriodicalIF":25.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct and efficient in situ rubidium extraction from potassium chloride salts\",\"authors\":\"Xulong Chen, Wenping Hu\",\"doi\":\"10.1038/s41893-024-01449-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rubidium (Rb) is a valuable rare alkali metal that plays a crucial role in various high-tech applications, but extracting Rb from conventional sources poses sustainability challenges. A considerable amount of Rb is found in potassium chloride (KCl) salts, which can serve as a sustainable source depending on the extraction methods. Current liquid-phase methods are problematic due to the low Rb/K separation factor and high consumption of energy, water and chemicals. Extracting Rb directly from solid KCl salts is a promising approach, but achieving efficient recovery remains a challenge. Here we propose a crystal ripening microextraction strategy that enables in situ extraction of Rb from solid KCl salts with high selectivity, simplicity and high efficiency. By applying this strategy, we recovered 92.37% of Rb from KCl salts with an initial Rb content of 113 ppm. Compared with liquid-phase extraction, our approach results in a 97.57% reduction in energy consumption, a 22.24% increase in recovery efficiency and a 13.46-fold higher Rb/K separation factor, which substantially enhance environmental and economic benefits. In addition, this approach is suitable for recovering other target metals needed for various industrial applications directly from different solid metallic salts, providing a pathway to improve the sustainability of critical metal supply. Sustainably extracting rubidium (Rb), a valuable critical metal, from alternative sources remains challenging. Here the authors report a crystal ripening microextraction strategy that allows efficient Rb extraction from potassium chloride salts, with large environmental and economic benefits.\",\"PeriodicalId\":19056,\"journal\":{\"name\":\"Nature Sustainability\",\"volume\":\"7 12\",\"pages\":\"1672-1680\"},\"PeriodicalIF\":25.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s41893-024-01449-w\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01449-w","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铷(Rb)是一种珍贵的稀有碱金属,在各种高科技应用中发挥着至关重要的作用,但从传统资源中提取铷存在可持续性挑战。在氯化钾(KCl)盐中发现了相当数量的Rb,根据提取方法的不同,它可以作为一个可持续的来源。目前的液相法存在Rb/K分离系数低、能源、水和化学品消耗大等问题。从固体KCl盐中直接提取Rb是一种很有前途的方法,但如何实现有效的回收仍然是一个挑战。本文提出了一种晶体成熟微萃取策略,该策略可以高选择性、简单高效地从固体KCl盐中原位提取Rb。采用该策略,从初始Rb含量为113 ppm的KCl盐中回收了92.37%的Rb。与液相萃取法相比,能耗降低97.57%,回收率提高22.24%,Rb/K分离系数提高13.46倍,显著提高了环境效益和经济效益。此外,该方法适用于从不同的固体金属盐中直接回收各种工业应用所需的其他目标金属,为提高关键金属供应的可持续性提供了途径。铷是一种有价值的关键金属,从替代来源中可持续地提取铷仍然具有挑战性。在这里,作者报告了一种晶体成熟微萃取策略,可以有效地从氯化钾盐中提取Rb,具有很大的环境和经济效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct and efficient in situ rubidium extraction from potassium chloride salts
Rubidium (Rb) is a valuable rare alkali metal that plays a crucial role in various high-tech applications, but extracting Rb from conventional sources poses sustainability challenges. A considerable amount of Rb is found in potassium chloride (KCl) salts, which can serve as a sustainable source depending on the extraction methods. Current liquid-phase methods are problematic due to the low Rb/K separation factor and high consumption of energy, water and chemicals. Extracting Rb directly from solid KCl salts is a promising approach, but achieving efficient recovery remains a challenge. Here we propose a crystal ripening microextraction strategy that enables in situ extraction of Rb from solid KCl salts with high selectivity, simplicity and high efficiency. By applying this strategy, we recovered 92.37% of Rb from KCl salts with an initial Rb content of 113 ppm. Compared with liquid-phase extraction, our approach results in a 97.57% reduction in energy consumption, a 22.24% increase in recovery efficiency and a 13.46-fold higher Rb/K separation factor, which substantially enhance environmental and economic benefits. In addition, this approach is suitable for recovering other target metals needed for various industrial applications directly from different solid metallic salts, providing a pathway to improve the sustainability of critical metal supply. Sustainably extracting rubidium (Rb), a valuable critical metal, from alternative sources remains challenging. Here the authors report a crystal ripening microextraction strategy that allows efficient Rb extraction from potassium chloride salts, with large environmental and economic benefits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Sustainability
Nature Sustainability Energy-Renewable Energy, Sustainability and the Environment
CiteScore
41.90
自引率
1.10%
发文量
159
期刊介绍: Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions. Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.
期刊最新文献
Data-driven strategies to improve nitrogen use efficiency of rice farming in South Asia Global South researchers need to focus on losses and damages Turning straw into reduced graphene oxide One-step conversion of biomass to reduced graphene oxide at room temperature Rethinking responses to the world’s water crises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1