TEMR:使用大规模GWAS汇总数据集的跨种族孟德尔随机化方法。

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY American journal of human genetics Pub Date : 2025-01-02 Epub Date: 2024-12-16 DOI:10.1016/j.ajhg.2024.11.006
Lei Hou, Sijia Wu, Zhongshang Yuan, Fuzhong Xue, Hongkai Li
{"title":"TEMR:使用大规模GWAS汇总数据集的跨种族孟德尔随机化方法。","authors":"Lei Hou, Sijia Wu, Zhongshang Yuan, Fuzhong Xue, Hongkai Li","doi":"10.1016/j.ajhg.2024.11.006","DOIUrl":null,"url":null,"abstract":"<p><p>Available large-scale genome-wide association study (GWAS) summary datasets predominantly stem from European populations, while sample sizes for other ethnicities, notably Central/South Asian, East Asian, African, Hispanic, etc., remain comparatively limited, resulting in low precision of causal effect estimations within these ethnicities when using Mendelian randomization (MR). In this paper, we propose a trans-ethnic MR method, TEMR, to improve the statistical power and estimation precision of MR in a target population that is underrepresented, using trans-ethnic large-scale GWAS summary datasets. TEMR incorporates trans-ethnic genetic correlation coefficients through a conditional likelihood-based inference framework, producing calibrated p values with substantially improved MR power. In the simulation study, compared with other existing MR methods, TEMR exhibited superior precision and statistical power in causal effect estimation within the target populations. Finally, we applied TEMR to infer causal relationships between concentrations of 16 blood biomarkers and the risk of developing five diseases (hypertension, ischemic stroke, type 2 diabetes, schizophrenia, and major depression disorder) in East Asian, African, and Hispanic/Latino populations, leveraging biobank-scale GWAS summary data obtained from individuals of European descent. We found that the causal biomarkers were mostly validated by previous MR methods, and we also discovered 17 causal relationships that were not identified using previously published MR methods.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"28-43"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739928/pdf/","citationCount":"0","resultStr":"{\"title\":\"TEMR: Trans-ethnic mendelian randomization method using large-scale GWAS summary datasets.\",\"authors\":\"Lei Hou, Sijia Wu, Zhongshang Yuan, Fuzhong Xue, Hongkai Li\",\"doi\":\"10.1016/j.ajhg.2024.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Available large-scale genome-wide association study (GWAS) summary datasets predominantly stem from European populations, while sample sizes for other ethnicities, notably Central/South Asian, East Asian, African, Hispanic, etc., remain comparatively limited, resulting in low precision of causal effect estimations within these ethnicities when using Mendelian randomization (MR). In this paper, we propose a trans-ethnic MR method, TEMR, to improve the statistical power and estimation precision of MR in a target population that is underrepresented, using trans-ethnic large-scale GWAS summary datasets. TEMR incorporates trans-ethnic genetic correlation coefficients through a conditional likelihood-based inference framework, producing calibrated p values with substantially improved MR power. In the simulation study, compared with other existing MR methods, TEMR exhibited superior precision and statistical power in causal effect estimation within the target populations. Finally, we applied TEMR to infer causal relationships between concentrations of 16 blood biomarkers and the risk of developing five diseases (hypertension, ischemic stroke, type 2 diabetes, schizophrenia, and major depression disorder) in East Asian, African, and Hispanic/Latino populations, leveraging biobank-scale GWAS summary data obtained from individuals of European descent. We found that the causal biomarkers were mostly validated by previous MR methods, and we also discovered 17 causal relationships that were not identified using previously published MR methods.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"28-43\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739928/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2024.11.006\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2024.11.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

可用的大规模全基因组关联研究(GWAS)汇总数据集主要来自欧洲人群,而其他种族的样本量,特别是中亚/南亚、东亚、非洲、西班牙裔等,仍然相对有限,导致使用孟德尔随机化(MR)在这些种族中进行因果效应估计的精度较低。在本文中,我们提出了一种跨种族MR方法,即TEMR,以提高跨种族大规模GWAS汇总数据集在代表性不足的目标人群中的MR统计能力和估计精度。TEMR通过一个基于条件似然的推断框架结合了跨种族遗传相关系数,产生了校准的p值,大大提高了MR功率。在模拟研究中,与其他现有的MR方法相比,TEMR在目标人群内的因果效应估计中表现出更高的精度和统计能力。最后,我们运用TEMR来推断东亚、非洲和西班牙裔/拉丁裔人群中16种血液生物标志物浓度与五种疾病(高血压、缺血性中风、2型糖尿病、精神分裂症和重度抑郁症)发生风险之间的因果关系,利用从欧洲血统个体获得的生物银行规模的GWAS汇总数据。我们发现因果生物标志物大多被以前的MR方法验证,我们还发现了17种因果关系,这些因果关系是以前发表的MR方法没有确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TEMR: Trans-ethnic mendelian randomization method using large-scale GWAS summary datasets.

Available large-scale genome-wide association study (GWAS) summary datasets predominantly stem from European populations, while sample sizes for other ethnicities, notably Central/South Asian, East Asian, African, Hispanic, etc., remain comparatively limited, resulting in low precision of causal effect estimations within these ethnicities when using Mendelian randomization (MR). In this paper, we propose a trans-ethnic MR method, TEMR, to improve the statistical power and estimation precision of MR in a target population that is underrepresented, using trans-ethnic large-scale GWAS summary datasets. TEMR incorporates trans-ethnic genetic correlation coefficients through a conditional likelihood-based inference framework, producing calibrated p values with substantially improved MR power. In the simulation study, compared with other existing MR methods, TEMR exhibited superior precision and statistical power in causal effect estimation within the target populations. Finally, we applied TEMR to infer causal relationships between concentrations of 16 blood biomarkers and the risk of developing five diseases (hypertension, ischemic stroke, type 2 diabetes, schizophrenia, and major depression disorder) in East Asian, African, and Hispanic/Latino populations, leveraging biobank-scale GWAS summary data obtained from individuals of European descent. We found that the causal biomarkers were mostly validated by previous MR methods, and we also discovered 17 causal relationships that were not identified using previously published MR methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
期刊最新文献
Single-cell transcriptomics reveals inter-ethnic variation in immune response to Falciparum malaria. Contribution of autosomal rare and de novo variants to sex differences in autism. Distinct explanations underlie gene-environment interactions in the UK Biobank. An evolving understanding of multiple causal variants underlying genetic association signals. Isogenic hiPSC models of Turner syndrome development reveal shared roles of inactive X and Y in the human cranial neural crest network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1