用于声波能量收集的压电纳米发电机的研究进展。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2024-12-18 DOI:10.1038/s41378-024-00811-4
Fandi Jean, Muhammad Umair Khan, Anas Alazzam, Baker Mohammad
{"title":"用于声波能量收集的压电纳米发电机的研究进展。","authors":"Fandi Jean, Muhammad Umair Khan, Anas Alazzam, Baker Mohammad","doi":"10.1038/s41378-024-00811-4","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for sustainable energy sources to power small electronics like IoT devices has led to exploring innovative solutions like acoustic energy harvesting using piezoelectric nanogenerators (PENGs). Acoustic energy harvesting leverages ambient noise, converting it into electrical energy through the piezoelectric effect, where certain materials generate an electric charge in response to mechanical stress or vibrations. This review paper provides a comprehensive analysis of the advancements in PENG technology, emphasizing their role in acoustic energy harvesting. We begin by discussing the essential principles of piezoelectricity and the design considerations for nanogenerators to optimize energy capture from sound waves. The discussion includes a detailed examination of various piezoelectric materials, such as polyvinylidene fluoride (PVDF), lead zirconate titanate (PZT), and zinc oxide (ZnO) nanowires, which are known for their superior piezoelectric properties. A critical aspect of this review is the exploration of innovative structural designs and resonance devices that enhance the efficiency of PENGs. We delve into the mechanisms and benefits of using Helmholtz resonators, quarter-wavelength tubes, and cantilever beams, which are instrumental in amplifying acoustic signals and improving energy conversion rates. Each device's design parameters and operational principles are scrutinized to highlight their contributions to the field. The review addresses practical applications of PENGs in various domains. Environmental monitoring systems, wearable electronics, and medical devices stand to benefit significantly from the continuous and sustainable power supplied by PENGs. These applications can reduce reliance on batteries and minimize maintenance by harnessing ambient acoustic energy, leading to more efficient and longer-lasting operations. Despite the promising potential of PENGs, several challenges remain, including material degradation, efficiency limitations, and integrating these devices into existing technological frameworks. This paper discusses these obstacles in detail and proposes potential solutions to enhance the longevity and performance of PENG systems. Innovations in material science and engineering are crucial to overcoming these hurdles and realizing the full potential of acoustic energy harvesting.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"197"},"PeriodicalIF":7.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652665/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancement in piezoelectric nanogenerators for acoustic energy harvesting.\",\"authors\":\"Fandi Jean, Muhammad Umair Khan, Anas Alazzam, Baker Mohammad\",\"doi\":\"10.1038/s41378-024-00811-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The demand for sustainable energy sources to power small electronics like IoT devices has led to exploring innovative solutions like acoustic energy harvesting using piezoelectric nanogenerators (PENGs). Acoustic energy harvesting leverages ambient noise, converting it into electrical energy through the piezoelectric effect, where certain materials generate an electric charge in response to mechanical stress or vibrations. This review paper provides a comprehensive analysis of the advancements in PENG technology, emphasizing their role in acoustic energy harvesting. We begin by discussing the essential principles of piezoelectricity and the design considerations for nanogenerators to optimize energy capture from sound waves. The discussion includes a detailed examination of various piezoelectric materials, such as polyvinylidene fluoride (PVDF), lead zirconate titanate (PZT), and zinc oxide (ZnO) nanowires, which are known for their superior piezoelectric properties. A critical aspect of this review is the exploration of innovative structural designs and resonance devices that enhance the efficiency of PENGs. We delve into the mechanisms and benefits of using Helmholtz resonators, quarter-wavelength tubes, and cantilever beams, which are instrumental in amplifying acoustic signals and improving energy conversion rates. Each device's design parameters and operational principles are scrutinized to highlight their contributions to the field. The review addresses practical applications of PENGs in various domains. Environmental monitoring systems, wearable electronics, and medical devices stand to benefit significantly from the continuous and sustainable power supplied by PENGs. These applications can reduce reliance on batteries and minimize maintenance by harnessing ambient acoustic energy, leading to more efficient and longer-lasting operations. Despite the promising potential of PENGs, several challenges remain, including material degradation, efficiency limitations, and integrating these devices into existing technological frameworks. This paper discusses these obstacles in detail and proposes potential solutions to enhance the longevity and performance of PENG systems. Innovations in material science and engineering are crucial to overcoming these hurdles and realizing the full potential of acoustic energy harvesting.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"197\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652665/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00811-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00811-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

物联网设备等小型电子设备对可持续能源的需求促使人们探索创新的解决方案,如使用压电纳米发电机(PENGs)收集声波能量。声波能量收集利用环境噪声,通过压电效应将其转化为电能,其中某些材料在响应机械应力或振动时产生电荷。本文综述了近年来国内外在声学能量收集方面的研究进展,并着重介绍了其在声学能量收集中的作用。我们首先讨论压电的基本原理和纳米发电机的设计考虑,以优化从声波中捕获能量。讨论包括对各种压电材料的详细检查,例如聚偏氟乙烯(PVDF),锆钛酸铅(PZT)和氧化锌(ZnO)纳米线,这些材料以其优越的压电性能而闻名。本综述的一个关键方面是探索创新的结构设计和共振装置,以提高等离子体的效率。我们深入研究了使用亥姆霍兹谐振器、四分之一波长管和悬臂梁的机制和好处,它们有助于放大声信号和提高能量转换率。每个设备的设计参数和操作原理都经过仔细审查,以突出它们对该领域的贡献。本文讨论了聚类聚类在各个领域的实际应用。环境监测系统、可穿戴电子设备和医疗设备将从鹏电的持续和可持续供电中获益良多。这些应用可以减少对电池的依赖,并通过利用环境声能最大限度地减少维护,从而实现更高效、更持久的运行。尽管PENGs具有很大的潜力,但仍然存在一些挑战,包括材料降解、效率限制以及将这些设备集成到现有的技术框架中。本文详细讨论了这些障碍,并提出了提高PENG系统寿命和性能的潜在解决方案。材料科学和工程的创新对于克服这些障碍和实现声波能量收集的全部潜力至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancement in piezoelectric nanogenerators for acoustic energy harvesting.

The demand for sustainable energy sources to power small electronics like IoT devices has led to exploring innovative solutions like acoustic energy harvesting using piezoelectric nanogenerators (PENGs). Acoustic energy harvesting leverages ambient noise, converting it into electrical energy through the piezoelectric effect, where certain materials generate an electric charge in response to mechanical stress or vibrations. This review paper provides a comprehensive analysis of the advancements in PENG technology, emphasizing their role in acoustic energy harvesting. We begin by discussing the essential principles of piezoelectricity and the design considerations for nanogenerators to optimize energy capture from sound waves. The discussion includes a detailed examination of various piezoelectric materials, such as polyvinylidene fluoride (PVDF), lead zirconate titanate (PZT), and zinc oxide (ZnO) nanowires, which are known for their superior piezoelectric properties. A critical aspect of this review is the exploration of innovative structural designs and resonance devices that enhance the efficiency of PENGs. We delve into the mechanisms and benefits of using Helmholtz resonators, quarter-wavelength tubes, and cantilever beams, which are instrumental in amplifying acoustic signals and improving energy conversion rates. Each device's design parameters and operational principles are scrutinized to highlight their contributions to the field. The review addresses practical applications of PENGs in various domains. Environmental monitoring systems, wearable electronics, and medical devices stand to benefit significantly from the continuous and sustainable power supplied by PENGs. These applications can reduce reliance on batteries and minimize maintenance by harnessing ambient acoustic energy, leading to more efficient and longer-lasting operations. Despite the promising potential of PENGs, several challenges remain, including material degradation, efficiency limitations, and integrating these devices into existing technological frameworks. This paper discusses these obstacles in detail and proposes potential solutions to enhance the longevity and performance of PENG systems. Innovations in material science and engineering are crucial to overcoming these hurdles and realizing the full potential of acoustic energy harvesting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
A low-cost printed circuit board-based centrifugal microfluidic platform for dielectrophoresis. Fully automated in vivo screening system for multi-organ imaging and pharmaceutical evaluation. Controllable tip exposure of ultramicroelectrodes coated by diamond-like carbon via direct microplasma jet for enhanced stability and fidelity in single-cell recording. Theoretical and experimental investigations of the CMOS compatible Pirani gauges with a temperature compensation model. An intelligent humidity sensing system for human behavior recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1