基于高伪电容分层 TiO2-B 纳米片组装球阴极的高性能镁锂双金属离子电池。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2025-01-23 DOI:10.1088/1361-6528/ada03a
Mewin Vincent, Venkata Sai Avvaru, Maciej Haranczyk, Vinodkumar Etacheri
{"title":"基于高伪电容分层 TiO2-B 纳米片组装球阴极的高性能镁锂双金属离子电池。","authors":"Mewin Vincent, Venkata Sai Avvaru, Maciej Haranczyk, Vinodkumar Etacheri","doi":"10.1088/1361-6528/ada03a","DOIUrl":null,"url":null,"abstract":"<p><p>Although Mg-Li dual metal-ion batteries are proposed as a superior system that unite safety of Mg-batteries and performance of Li-ion based systems, its practical implantation is limited due to the lack of reliable high-performance cathodes. Herein, we report a high-performance Mg-Li dual metal-ion battery system based on highly pseudocapacitive hierarchical TiO<sub>2</sub>-B nanosheet assembled spheres (NS) cathode. This 2D cathode displayed exceptional pseudocapacitance (a maximum of 93%) specific capacity (303 mAh g<sup>-1</sup>at 25 mA g<sup>-1</sup>), rate performance (210 mAh g<sup>-1</sup>at 1 A g<sup>-1</sup>), consistent cycling (retain ∼100% capacity for 3000 cycles at 1 A g<sup>-1</sup>), Coulombic efficiency (nearly 100%) and fast-charging (∼12.1 min). These properties are remarkably dominant to the existing Mg-Li dual metal-ion battery cathodes. Spectroscopic and microscopic mechanistic studies confirmed negligible structural changes during charge-discharge cycles of the TiO<sub>2</sub>-B nanosheet assembled spheres electrodes. Exceptional electrochemical properties of the 2D electrode is ascribed to remarkable pseudocapacitive Mg-Li dual metal-ion diffusion via the numerous nanointerfaces of TiO<sub>2</sub>-B caused by its hierarchical microstrucrure. Large surface area, nanosheet morphology, mesoporous structure and ultrathin nature also acted as secondary factors facilitating improved electrode-electrolyte contact. Demonstrated approach of pseudocapacitive type Mg-Li dual metal-ion intercalation through hierarchical nanointerfaces may be further utilized for the designing of numerous top-notch electrode materials for futuristic Mg-Li dual metal-ion batteries.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High performance Mg-Li dual metal-ion batteries based on highly pseudocapacitive hierarchical TiO<sub>2</sub>-B nanosheet assembled spheres cathodes.\",\"authors\":\"Mewin Vincent, Venkata Sai Avvaru, Maciej Haranczyk, Vinodkumar Etacheri\",\"doi\":\"10.1088/1361-6528/ada03a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although Mg-Li dual metal-ion batteries are proposed as a superior system that unite safety of Mg-batteries and performance of Li-ion based systems, its practical implantation is limited due to the lack of reliable high-performance cathodes. Herein, we report a high-performance Mg-Li dual metal-ion battery system based on highly pseudocapacitive hierarchical TiO<sub>2</sub>-B nanosheet assembled spheres (NS) cathode. This 2D cathode displayed exceptional pseudocapacitance (a maximum of 93%) specific capacity (303 mAh g<sup>-1</sup>at 25 mA g<sup>-1</sup>), rate performance (210 mAh g<sup>-1</sup>at 1 A g<sup>-1</sup>), consistent cycling (retain ∼100% capacity for 3000 cycles at 1 A g<sup>-1</sup>), Coulombic efficiency (nearly 100%) and fast-charging (∼12.1 min). These properties are remarkably dominant to the existing Mg-Li dual metal-ion battery cathodes. Spectroscopic and microscopic mechanistic studies confirmed negligible structural changes during charge-discharge cycles of the TiO<sub>2</sub>-B nanosheet assembled spheres electrodes. Exceptional electrochemical properties of the 2D electrode is ascribed to remarkable pseudocapacitive Mg-Li dual metal-ion diffusion via the numerous nanointerfaces of TiO<sub>2</sub>-B caused by its hierarchical microstrucrure. Large surface area, nanosheet morphology, mesoporous structure and ultrathin nature also acted as secondary factors facilitating improved electrode-electrolyte contact. Demonstrated approach of pseudocapacitive type Mg-Li dual metal-ion intercalation through hierarchical nanointerfaces may be further utilized for the designing of numerous top-notch electrode materials for futuristic Mg-Li dual metal-ion batteries.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ada03a\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada03a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

虽然Mg-Li双金属离子电池被认为是一种将mg电池的安全性与锂离子系统的性能结合在一起的优越系统,但由于缺乏可靠的高性能阴极,其实际应用受到限制。在此,我们报道了一种基于高假电容级TiO2-B纳米片组装球(NS)阴极的高性能Mg-Li双金属离子电池系统。该2D阴极具有优异的赝电容(最大93%)比容量(25 mA/g时为303 mAh/g),倍率性能(1A/g时为210 mAh/g),稳定的循环(在1A/g下3000次循环保持100%的容量),库仑效率(接近100%)和快速充电(~12.1 min)。这些性能明显优于现有的镁锂双金属离子电池阴极。光谱和微观机理研究证实,TiO2-B纳米片组装球电极在充放电循环过程中的结构变化可以忽略不计。二维电极优异的电化学性能归因于其分层微观结构导致的Mg-Li双金属离子在TiO2-B的众多纳米界面上的赝电容性扩散。大表面积、纳米片形貌、介孔结构和超薄性质也是促进电极-电解质接触改善的次要因素。所展示的伪电容型Mg-Li双金属离子嵌入层叠纳米界面的方法可以进一步用于未来Mg-Li双金属离子电池的许多顶尖电极材料的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High performance Mg-Li dual metal-ion batteries based on highly pseudocapacitive hierarchical TiO2-B nanosheet assembled spheres cathodes.

Although Mg-Li dual metal-ion batteries are proposed as a superior system that unite safety of Mg-batteries and performance of Li-ion based systems, its practical implantation is limited due to the lack of reliable high-performance cathodes. Herein, we report a high-performance Mg-Li dual metal-ion battery system based on highly pseudocapacitive hierarchical TiO2-B nanosheet assembled spheres (NS) cathode. This 2D cathode displayed exceptional pseudocapacitance (a maximum of 93%) specific capacity (303 mAh g-1at 25 mA g-1), rate performance (210 mAh g-1at 1 A g-1), consistent cycling (retain ∼100% capacity for 3000 cycles at 1 A g-1), Coulombic efficiency (nearly 100%) and fast-charging (∼12.1 min). These properties are remarkably dominant to the existing Mg-Li dual metal-ion battery cathodes. Spectroscopic and microscopic mechanistic studies confirmed negligible structural changes during charge-discharge cycles of the TiO2-B nanosheet assembled spheres electrodes. Exceptional electrochemical properties of the 2D electrode is ascribed to remarkable pseudocapacitive Mg-Li dual metal-ion diffusion via the numerous nanointerfaces of TiO2-B caused by its hierarchical microstrucrure. Large surface area, nanosheet morphology, mesoporous structure and ultrathin nature also acted as secondary factors facilitating improved electrode-electrolyte contact. Demonstrated approach of pseudocapacitive type Mg-Li dual metal-ion intercalation through hierarchical nanointerfaces may be further utilized for the designing of numerous top-notch electrode materials for futuristic Mg-Li dual metal-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
C60fullerene improves the contractile activity of the injured ratmuscle gastrocnemius. Metal chalcogenide quantum dots for photochemical and electrochemical hydrogen generation: recent advancements and technological challenges. Dexamethasone-loaded fibroin nanoparticles promote retinal reattachment in rats by regulating the Th17/Treg balance. Hydrophobic PU fabric with synergistic conductive networks for boosted high sensitivity, wide linear-range wearable strain sensor. Selective area molecular beam epitaxy of InSb on InP(111)B: from thin films to quantum nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1