{"title":"在棘轮势中运动的布朗粒子与温度二次下降耦合的精确时相关热力学关系。","authors":"Mesfin Asfaw Taye","doi":"10.1103/PhysRevE.110.054105","DOIUrl":null,"url":null,"abstract":"<p><p>The thermodynamic relations for a Brownian particle moving in a discrete ratchet potential coupled with quadratically decreasing temperature are explored as a function of time. We show that this thermal arrangement leads to a higher velocity (lower efficiency) compared to a Brownian particle operating between hot and cold baths, and a heat bath where the temperature linearly decreases along with the reaction coordinate. The results obtained in this study indicate that if the goal is to design a fast-moving motor, the quadratic thermal arrangement is more advantageous than the other two thermal arrangements. In contrast, the entropy, entropy production rate, and entropy extraction rate are significantly larger in the case of a quadratically decreasing temperature compared to the linearly decreasing temperature case and piecewise constant temperature case. Furthermore, the thermodynamic features of a system consisting of several Brownian ratchets arranged in a complex network are explored. The theoretical findings exhibit that as the network size increases, the entropy, entropy production, and entropy extraction of the system also increase, showing that these thermodynamic quantities exhibit extensive property. As a result, as the number of lattice sizes increases, thermodynamic relations such as entropy, entropy production, and entropy extraction also step up, confirming that these complex networks cannot be reduced to a corresponding one-dimensional lattice. However, in the long time limit, thermodynamic relations such as velocity, entropy production rate, and entropy extraction rate become independent of the network size. These results are also confirmed via a continuum Fokker-Planck model for the overdamped case.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054105"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact time-dependent thermodynamic relations for a Brownian particle moving in a ratchet potential coupled with quadratically decreasing temperature.\",\"authors\":\"Mesfin Asfaw Taye\",\"doi\":\"10.1103/PhysRevE.110.054105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The thermodynamic relations for a Brownian particle moving in a discrete ratchet potential coupled with quadratically decreasing temperature are explored as a function of time. We show that this thermal arrangement leads to a higher velocity (lower efficiency) compared to a Brownian particle operating between hot and cold baths, and a heat bath where the temperature linearly decreases along with the reaction coordinate. The results obtained in this study indicate that if the goal is to design a fast-moving motor, the quadratic thermal arrangement is more advantageous than the other two thermal arrangements. In contrast, the entropy, entropy production rate, and entropy extraction rate are significantly larger in the case of a quadratically decreasing temperature compared to the linearly decreasing temperature case and piecewise constant temperature case. Furthermore, the thermodynamic features of a system consisting of several Brownian ratchets arranged in a complex network are explored. The theoretical findings exhibit that as the network size increases, the entropy, entropy production, and entropy extraction of the system also increase, showing that these thermodynamic quantities exhibit extensive property. As a result, as the number of lattice sizes increases, thermodynamic relations such as entropy, entropy production, and entropy extraction also step up, confirming that these complex networks cannot be reduced to a corresponding one-dimensional lattice. However, in the long time limit, thermodynamic relations such as velocity, entropy production rate, and entropy extraction rate become independent of the network size. These results are also confirmed via a continuum Fokker-Planck model for the overdamped case.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"110 5-1\",\"pages\":\"054105\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.054105\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054105","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Exact time-dependent thermodynamic relations for a Brownian particle moving in a ratchet potential coupled with quadratically decreasing temperature.
The thermodynamic relations for a Brownian particle moving in a discrete ratchet potential coupled with quadratically decreasing temperature are explored as a function of time. We show that this thermal arrangement leads to a higher velocity (lower efficiency) compared to a Brownian particle operating between hot and cold baths, and a heat bath where the temperature linearly decreases along with the reaction coordinate. The results obtained in this study indicate that if the goal is to design a fast-moving motor, the quadratic thermal arrangement is more advantageous than the other two thermal arrangements. In contrast, the entropy, entropy production rate, and entropy extraction rate are significantly larger in the case of a quadratically decreasing temperature compared to the linearly decreasing temperature case and piecewise constant temperature case. Furthermore, the thermodynamic features of a system consisting of several Brownian ratchets arranged in a complex network are explored. The theoretical findings exhibit that as the network size increases, the entropy, entropy production, and entropy extraction of the system also increase, showing that these thermodynamic quantities exhibit extensive property. As a result, as the number of lattice sizes increases, thermodynamic relations such as entropy, entropy production, and entropy extraction also step up, confirming that these complex networks cannot be reduced to a corresponding one-dimensional lattice. However, in the long time limit, thermodynamic relations such as velocity, entropy production rate, and entropy extraction rate become independent of the network size. These results are also confirmed via a continuum Fokker-Planck model for the overdamped case.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.