在棘轮势中运动的布朗粒子与温度二次下降耦合的精确时相关热力学关系。

IF 2.4 3区 物理与天体物理 Q1 Mathematics Physical review. E Pub Date : 2024-11-01 DOI:10.1103/PhysRevE.110.054105
Mesfin Asfaw Taye
{"title":"在棘轮势中运动的布朗粒子与温度二次下降耦合的精确时相关热力学关系。","authors":"Mesfin Asfaw Taye","doi":"10.1103/PhysRevE.110.054105","DOIUrl":null,"url":null,"abstract":"<p><p>The thermodynamic relations for a Brownian particle moving in a discrete ratchet potential coupled with quadratically decreasing temperature are explored as a function of time. We show that this thermal arrangement leads to a higher velocity (lower efficiency) compared to a Brownian particle operating between hot and cold baths, and a heat bath where the temperature linearly decreases along with the reaction coordinate. The results obtained in this study indicate that if the goal is to design a fast-moving motor, the quadratic thermal arrangement is more advantageous than the other two thermal arrangements. In contrast, the entropy, entropy production rate, and entropy extraction rate are significantly larger in the case of a quadratically decreasing temperature compared to the linearly decreasing temperature case and piecewise constant temperature case. Furthermore, the thermodynamic features of a system consisting of several Brownian ratchets arranged in a complex network are explored. The theoretical findings exhibit that as the network size increases, the entropy, entropy production, and entropy extraction of the system also increase, showing that these thermodynamic quantities exhibit extensive property. As a result, as the number of lattice sizes increases, thermodynamic relations such as entropy, entropy production, and entropy extraction also step up, confirming that these complex networks cannot be reduced to a corresponding one-dimensional lattice. However, in the long time limit, thermodynamic relations such as velocity, entropy production rate, and entropy extraction rate become independent of the network size. These results are also confirmed via a continuum Fokker-Planck model for the overdamped case.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054105"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact time-dependent thermodynamic relations for a Brownian particle moving in a ratchet potential coupled with quadratically decreasing temperature.\",\"authors\":\"Mesfin Asfaw Taye\",\"doi\":\"10.1103/PhysRevE.110.054105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The thermodynamic relations for a Brownian particle moving in a discrete ratchet potential coupled with quadratically decreasing temperature are explored as a function of time. We show that this thermal arrangement leads to a higher velocity (lower efficiency) compared to a Brownian particle operating between hot and cold baths, and a heat bath where the temperature linearly decreases along with the reaction coordinate. The results obtained in this study indicate that if the goal is to design a fast-moving motor, the quadratic thermal arrangement is more advantageous than the other two thermal arrangements. In contrast, the entropy, entropy production rate, and entropy extraction rate are significantly larger in the case of a quadratically decreasing temperature compared to the linearly decreasing temperature case and piecewise constant temperature case. Furthermore, the thermodynamic features of a system consisting of several Brownian ratchets arranged in a complex network are explored. The theoretical findings exhibit that as the network size increases, the entropy, entropy production, and entropy extraction of the system also increase, showing that these thermodynamic quantities exhibit extensive property. As a result, as the number of lattice sizes increases, thermodynamic relations such as entropy, entropy production, and entropy extraction also step up, confirming that these complex networks cannot be reduced to a corresponding one-dimensional lattice. However, in the long time limit, thermodynamic relations such as velocity, entropy production rate, and entropy extraction rate become independent of the network size. These results are also confirmed via a continuum Fokker-Planck model for the overdamped case.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"110 5-1\",\"pages\":\"054105\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.054105\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054105","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究了布朗粒子在离散棘轮势中运动时随温度二次下降的热力学关系。我们表明,与布朗粒子在热浴和冷浴之间以及温度随反应坐标线性降低的热浴之间运行相比,这种热排列导致了更高的速度(更低的效率)。研究结果表明,如果设计的目标是快速运动的电机,二次热排列比其他两种热排列更有利。与此相反,与线性降温和分段恒温情况相比,二次降温情况下的熵、熵产率和熵提取率明显更大。此外,我们还探讨了一个由几个布朗棘轮组成的复杂网络系统的热力学特征。理论发现表明,随着网络规模的增加,系统的熵、熵产和熵提取也增加,表明这些热力学量表现出广泛的性质。因此,随着晶格尺寸的增加,熵、熵产生和熵提取等热力学关系也会加强,这证实了这些复杂的网络不能简化为相应的一维晶格。然而,在长时间限制下,速度、熵产率、熵提取率等热力学关系与网络大小无关。这些结果也通过一个连续的福克-普朗克模型证实了过阻尼情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exact time-dependent thermodynamic relations for a Brownian particle moving in a ratchet potential coupled with quadratically decreasing temperature.

The thermodynamic relations for a Brownian particle moving in a discrete ratchet potential coupled with quadratically decreasing temperature are explored as a function of time. We show that this thermal arrangement leads to a higher velocity (lower efficiency) compared to a Brownian particle operating between hot and cold baths, and a heat bath where the temperature linearly decreases along with the reaction coordinate. The results obtained in this study indicate that if the goal is to design a fast-moving motor, the quadratic thermal arrangement is more advantageous than the other two thermal arrangements. In contrast, the entropy, entropy production rate, and entropy extraction rate are significantly larger in the case of a quadratically decreasing temperature compared to the linearly decreasing temperature case and piecewise constant temperature case. Furthermore, the thermodynamic features of a system consisting of several Brownian ratchets arranged in a complex network are explored. The theoretical findings exhibit that as the network size increases, the entropy, entropy production, and entropy extraction of the system also increase, showing that these thermodynamic quantities exhibit extensive property. As a result, as the number of lattice sizes increases, thermodynamic relations such as entropy, entropy production, and entropy extraction also step up, confirming that these complex networks cannot be reduced to a corresponding one-dimensional lattice. However, in the long time limit, thermodynamic relations such as velocity, entropy production rate, and entropy extraction rate become independent of the network size. These results are also confirmed via a continuum Fokker-Planck model for the overdamped case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Energy exchange statistics and fluctuation theorem for nonthermal asymptotic states. Ergodicity breaking and restoration in models of heat transport with microscopic reversibility. Random search for a partially reactive target by multiple diffusive searchers. Random walk with horizontal and cyclic currents. Noise-induced transitions from contractile to extensile active stress in isotropic fluids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1