转换交通事故调查:智能三维交通事故重建的虚实融合框架

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2024-12-19 DOI:10.1007/s40747-024-01693-9
Yanzhan Chen, Qian Zhang, Fan Yu
{"title":"转换交通事故调查:智能三维交通事故重建的虚实融合框架","authors":"Yanzhan Chen, Qian Zhang, Fan Yu","doi":"10.1007/s40747-024-01693-9","DOIUrl":null,"url":null,"abstract":"<p>The daily occurrence of traffic accidents has led to the development of 3D reconstruction as a key tool for reconstruction, investigation, and insurance claims. This study proposes a novel virtual-real-fusion simulation framework that integrates traffic accident generation, unmanned aerial vehicle (UAV)-based image collection, and a 3D traffic accident reconstruction pipeline with advanced computer vision techniques and unsupervised 3D point cloud clustering algorithms. Specifically, a micro-traffic simulator and an autonomous driving simulator are co-simulated to generate high-fidelity traffic accidents. Subsequently, a deep learning-based reconstruction method, i.e., 3D Gaussian splatting (3D-GS), is utilized to construct 3D digitized traffic accident scenes from UAV-based image datasets collected in the traffic simulation environment. While visual rendering by 3D-GS struggles under adverse conditions like nighttime or rain, a clustering parameter stochastic optimization model and mixed-integer programming Bayesian optimization (MIPBO) algorithm are proposed to enhance the segmentation of large-scale 3D point clouds. In the numerical experiments, 3D-GS produces high-quality, seamless, and real-time rendered traffic accident scenes achieve a structural similarity index measure of up to 0.90 across different towns. Furthermore, the proposed MIPDBO algorithm exhibits a remarkably fast convergence rate, requiring only 3–5 iterations to identify well-performing parameters and achieve a high <span>\\({R}^{2}\\)</span> value of 0.8 on a benchmark cluster problem. Finally, the Gaussian Mixture Model assisted by MIPBO accurately separates various traffic elements in the accident scenes, demonstrating higher effectiveness compared to other classical clustering algorithms.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"27 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming traffic accident investigations: a virtual-real-fusion framework for intelligent 3D traffic accident reconstruction\",\"authors\":\"Yanzhan Chen, Qian Zhang, Fan Yu\",\"doi\":\"10.1007/s40747-024-01693-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The daily occurrence of traffic accidents has led to the development of 3D reconstruction as a key tool for reconstruction, investigation, and insurance claims. This study proposes a novel virtual-real-fusion simulation framework that integrates traffic accident generation, unmanned aerial vehicle (UAV)-based image collection, and a 3D traffic accident reconstruction pipeline with advanced computer vision techniques and unsupervised 3D point cloud clustering algorithms. Specifically, a micro-traffic simulator and an autonomous driving simulator are co-simulated to generate high-fidelity traffic accidents. Subsequently, a deep learning-based reconstruction method, i.e., 3D Gaussian splatting (3D-GS), is utilized to construct 3D digitized traffic accident scenes from UAV-based image datasets collected in the traffic simulation environment. While visual rendering by 3D-GS struggles under adverse conditions like nighttime or rain, a clustering parameter stochastic optimization model and mixed-integer programming Bayesian optimization (MIPBO) algorithm are proposed to enhance the segmentation of large-scale 3D point clouds. In the numerical experiments, 3D-GS produces high-quality, seamless, and real-time rendered traffic accident scenes achieve a structural similarity index measure of up to 0.90 across different towns. Furthermore, the proposed MIPDBO algorithm exhibits a remarkably fast convergence rate, requiring only 3–5 iterations to identify well-performing parameters and achieve a high <span>\\\\({R}^{2}\\\\)</span> value of 0.8 on a benchmark cluster problem. Finally, the Gaussian Mixture Model assisted by MIPBO accurately separates various traffic elements in the accident scenes, demonstrating higher effectiveness compared to other classical clustering algorithms.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01693-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01693-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着交通事故的频繁发生,三维重建技术已成为重建、调查和保险索赔的重要工具。本研究提出了一种新型的虚实融合仿真框架,该框架结合先进的计算机视觉技术和无监督的三维点云聚类算法,集成了交通事故生成、基于无人机的图像采集和三维交通事故重建管道。具体而言,通过微交通模拟器和自动驾驶模拟器的联合仿真,生成高保真的交通事故。随后,利用基于深度学习的三维高斯溅射(3D- gs)重建方法,从交通仿真环境中采集的基于无人机的图像数据集构建三维数字化交通事故场景。针对3D- gs在夜间或雨天等恶劣条件下难以进行视觉渲染的问题,提出了一种聚类参数随机优化模型和混合整数规划贝叶斯优化(MIPBO)算法来增强对大规模三维点云的分割。在数值实验中,3D-GS生成的高质量、无缝和实时渲染的交通事故场景在不同城镇之间实现了高达0.90的结构相似指数。此外,所提出的MIPDBO算法具有非常快的收敛速度,只需3-5次迭代即可识别出性能良好的参数,并且在基准聚类问题上达到0.8的\({R}^{2}\)值。最后,MIPBO辅助下的高斯混合模型准确地分离了事故现场的各种交通元素,与其他经典聚类算法相比,显示出更高的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transforming traffic accident investigations: a virtual-real-fusion framework for intelligent 3D traffic accident reconstruction

The daily occurrence of traffic accidents has led to the development of 3D reconstruction as a key tool for reconstruction, investigation, and insurance claims. This study proposes a novel virtual-real-fusion simulation framework that integrates traffic accident generation, unmanned aerial vehicle (UAV)-based image collection, and a 3D traffic accident reconstruction pipeline with advanced computer vision techniques and unsupervised 3D point cloud clustering algorithms. Specifically, a micro-traffic simulator and an autonomous driving simulator are co-simulated to generate high-fidelity traffic accidents. Subsequently, a deep learning-based reconstruction method, i.e., 3D Gaussian splatting (3D-GS), is utilized to construct 3D digitized traffic accident scenes from UAV-based image datasets collected in the traffic simulation environment. While visual rendering by 3D-GS struggles under adverse conditions like nighttime or rain, a clustering parameter stochastic optimization model and mixed-integer programming Bayesian optimization (MIPBO) algorithm are proposed to enhance the segmentation of large-scale 3D point clouds. In the numerical experiments, 3D-GS produces high-quality, seamless, and real-time rendered traffic accident scenes achieve a structural similarity index measure of up to 0.90 across different towns. Furthermore, the proposed MIPDBO algorithm exhibits a remarkably fast convergence rate, requiring only 3–5 iterations to identify well-performing parameters and achieve a high \({R}^{2}\) value of 0.8 on a benchmark cluster problem. Finally, the Gaussian Mixture Model assisted by MIPBO accurately separates various traffic elements in the accident scenes, demonstrating higher effectiveness compared to other classical clustering algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Tailored meta-learning for dual trajectory transformer: advancing generalized trajectory prediction Control strategy of robotic manipulator based on multi-task reinforcement learning Explainable and secure framework for autism prediction using multimodal eye tracking and kinematic data A novel three-way distance-based fuzzy large margin distribution machine for imbalance classification Chaos-enhanced metaheuristics: classification, comparison, and convergence analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1