量子门控循环神经网络

Yanan Li;Zhimin Wang;Ruipeng Xing;Changheng Shao;Shangshang Shi;Jiaxin Li;Guoqiang Zhong;Yongjian Gu
{"title":"量子门控循环神经网络","authors":"Yanan Li;Zhimin Wang;Ruipeng Xing;Changheng Shao;Shangshang Shi;Jiaxin Li;Guoqiang Zhong;Yongjian Gu","doi":"10.1109/TPAMI.2024.3519605","DOIUrl":null,"url":null,"abstract":"The exploration of quantum advantages with Quantum Neural Networks (QNNs) is an exciting endeavor. Recurrent neural networks, the widely used framework in deep learning, suffer from the gradient vanishing and exploding problem, which limits their ability to learn long-term dependencies. To address this challenge, in this work, we develop the sequential model of Quantum Gated Recurrent Neural Networks (QGRNNs). This model naturally integrates the gating mechanism into the framework of the variational ansatz circuit of QNNs, enabling efficient execution on near-term quantum devices. We present rigorous proof that QGRNNs can preserve the gradient norm of long-term interactions throughout the recurrent network, enabling efficient learning of long-term dependencies. Meanwhile, the architectural features of QGRNNs can effectively mitigate the barren plateau phenomenon. The effectiveness of QGRNNs in sequential learning is convincingly demonstrated through various typical tasks, including solving the adding problem, learning gene regulatory networks, and predicting stock prices. The hardware-efficient architecture and superior performance of our QGRNNs indicate their promising potential for finding quantum advantageous applications in the near term.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2493-2504"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Gated Recurrent Neural Networks\",\"authors\":\"Yanan Li;Zhimin Wang;Ruipeng Xing;Changheng Shao;Shangshang Shi;Jiaxin Li;Guoqiang Zhong;Yongjian Gu\",\"doi\":\"10.1109/TPAMI.2024.3519605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exploration of quantum advantages with Quantum Neural Networks (QNNs) is an exciting endeavor. Recurrent neural networks, the widely used framework in deep learning, suffer from the gradient vanishing and exploding problem, which limits their ability to learn long-term dependencies. To address this challenge, in this work, we develop the sequential model of Quantum Gated Recurrent Neural Networks (QGRNNs). This model naturally integrates the gating mechanism into the framework of the variational ansatz circuit of QNNs, enabling efficient execution on near-term quantum devices. We present rigorous proof that QGRNNs can preserve the gradient norm of long-term interactions throughout the recurrent network, enabling efficient learning of long-term dependencies. Meanwhile, the architectural features of QGRNNs can effectively mitigate the barren plateau phenomenon. The effectiveness of QGRNNs in sequential learning is convincingly demonstrated through various typical tasks, including solving the adding problem, learning gene regulatory networks, and predicting stock prices. The hardware-efficient architecture and superior performance of our QGRNNs indicate their promising potential for finding quantum advantageous applications in the near term.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 4\",\"pages\":\"2493-2504\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806779/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806779/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Gated Recurrent Neural Networks
The exploration of quantum advantages with Quantum Neural Networks (QNNs) is an exciting endeavor. Recurrent neural networks, the widely used framework in deep learning, suffer from the gradient vanishing and exploding problem, which limits their ability to learn long-term dependencies. To address this challenge, in this work, we develop the sequential model of Quantum Gated Recurrent Neural Networks (QGRNNs). This model naturally integrates the gating mechanism into the framework of the variational ansatz circuit of QNNs, enabling efficient execution on near-term quantum devices. We present rigorous proof that QGRNNs can preserve the gradient norm of long-term interactions throughout the recurrent network, enabling efficient learning of long-term dependencies. Meanwhile, the architectural features of QGRNNs can effectively mitigate the barren plateau phenomenon. The effectiveness of QGRNNs in sequential learning is convincingly demonstrated through various typical tasks, including solving the adding problem, learning gene regulatory networks, and predicting stock prices. The hardware-efficient architecture and superior performance of our QGRNNs indicate their promising potential for finding quantum advantageous applications in the near term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1