M33 中一氧化碳和尘埃的分子云匹配

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2024-12-18 DOI:10.1051/0004-6361/202451451
Eduard Keilmann, Slawa Kabanovic, Nicola Schneider, Volker Ossenkopf-Okada, Jürgen Stutzki, Masato I. N. Kobayashi, Robert Simon, Christof Buchbender, Dominik Riechers, Frank Bigiel, Fatemeh Tabatabaei
{"title":"M33 中一氧化碳和尘埃的分子云匹配","authors":"Eduard Keilmann, Slawa Kabanovic, Nicola Schneider, Volker Ossenkopf-Okada, Jürgen Stutzki, Masato I. N. Kobayashi, Robert Simon, Christof Buchbender, Dominik Riechers, Frank Bigiel, Fatemeh Tabatabaei","doi":"10.1051/0004-6361/202451451","DOIUrl":null,"url":null,"abstract":"Understanding the physical properties such as mass, size, and surface mass density of giant molecular clouds or associations (GMCs/GMAs) in galaxies is crucial for gaining deeper insights into the molecular cloud and star formation (SF) processes. We determine these quantities for the Local Group flocculent spiral galaxy M33 using H<i>erschel<i/> dust and archival <sup>12<sup/>CO(2 − 1) data from the IRAM 30 m telescope, and compare them to GMC/GMA properties of the Milky Way derived from CO literature data. For M33, we apply the Dendrogram algorithm on a novel 2D dust-derived <i>N<i/><sub>H<sub>2<sub/><sub/> map at an angular resolution of 18.2″ and on the <sup>12<sup/>CO(2 − 1) data and employ an <i>X<i/><sub>CO<sub/> factor map instead of a constant value. Dust and CO-derived values are similar, with mean radii of ∼58 pc for the dust and ∼68 pc for CO, respectively. However, the largest GMAs have a radius of around 150 pc, similar to what was found in the Milky Way and other galaxies, suggesting a physical process that limits the size of GMAs. The less massive and smaller M33 galaxy also hosts less massive and lower-density GMCs compared to the Milky Way by an order of magnitude. Notably, the most massive (> a few 10<sup>6<sup/> M<sub>⊙<sub/>) GMC population observed in the Milky Way is mainly missing in M33. The mean surface mass density of M33 is significantly smaller than that of the Milky Way and this is attributed to higher column densities of the largest GMCs in the Milky Way, despite similar GMC areas. We find no systematic gradients in physical properties with the galactocentric radius in M33. However, surface mass densities and masses are higher near the center, implying increased SF activity. In both galaxies, the central region contains ∼30% of the total molecular mass. The index of the power-law spectrum of the GMC masses across the entire disk of M33 is <i>α<i/> = 2.3 ± 0.1 and <i>α<i/> = 1.9 ± 0.1 for dust- and CO-derived data, respectively. We conclude that GMC properties in M33 and the Milky Way are largely similar, though M33 lacks high-mass GMCs, for which there is no straightforward explanation. Additionally, GMC properties are only weakly dependent on the galactic environment, with stellar feedback playing a role that needs further investigation.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"7 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular cloud matching in CO and dust in M33\",\"authors\":\"Eduard Keilmann, Slawa Kabanovic, Nicola Schneider, Volker Ossenkopf-Okada, Jürgen Stutzki, Masato I. N. Kobayashi, Robert Simon, Christof Buchbender, Dominik Riechers, Frank Bigiel, Fatemeh Tabatabaei\",\"doi\":\"10.1051/0004-6361/202451451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the physical properties such as mass, size, and surface mass density of giant molecular clouds or associations (GMCs/GMAs) in galaxies is crucial for gaining deeper insights into the molecular cloud and star formation (SF) processes. We determine these quantities for the Local Group flocculent spiral galaxy M33 using H<i>erschel<i/> dust and archival <sup>12<sup/>CO(2 − 1) data from the IRAM 30 m telescope, and compare them to GMC/GMA properties of the Milky Way derived from CO literature data. For M33, we apply the Dendrogram algorithm on a novel 2D dust-derived <i>N<i/><sub>H<sub>2<sub/><sub/> map at an angular resolution of 18.2″ and on the <sup>12<sup/>CO(2 − 1) data and employ an <i>X<i/><sub>CO<sub/> factor map instead of a constant value. Dust and CO-derived values are similar, with mean radii of ∼58 pc for the dust and ∼68 pc for CO, respectively. However, the largest GMAs have a radius of around 150 pc, similar to what was found in the Milky Way and other galaxies, suggesting a physical process that limits the size of GMAs. The less massive and smaller M33 galaxy also hosts less massive and lower-density GMCs compared to the Milky Way by an order of magnitude. Notably, the most massive (> a few 10<sup>6<sup/> M<sub>⊙<sub/>) GMC population observed in the Milky Way is mainly missing in M33. The mean surface mass density of M33 is significantly smaller than that of the Milky Way and this is attributed to higher column densities of the largest GMCs in the Milky Way, despite similar GMC areas. We find no systematic gradients in physical properties with the galactocentric radius in M33. However, surface mass densities and masses are higher near the center, implying increased SF activity. In both galaxies, the central region contains ∼30% of the total molecular mass. The index of the power-law spectrum of the GMC masses across the entire disk of M33 is <i>α<i/> = 2.3 ± 0.1 and <i>α<i/> = 1.9 ± 0.1 for dust- and CO-derived data, respectively. We conclude that GMC properties in M33 and the Milky Way are largely similar, though M33 lacks high-mass GMCs, for which there is no straightforward explanation. Additionally, GMC properties are only weakly dependent on the galactic environment, with stellar feedback playing a role that needs further investigation.\",\"PeriodicalId\":8571,\"journal\":{\"name\":\"Astronomy & Astrophysics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy & Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202451451\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202451451","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular cloud matching in CO and dust in M33
Understanding the physical properties such as mass, size, and surface mass density of giant molecular clouds or associations (GMCs/GMAs) in galaxies is crucial for gaining deeper insights into the molecular cloud and star formation (SF) processes. We determine these quantities for the Local Group flocculent spiral galaxy M33 using Herschel dust and archival 12CO(2 − 1) data from the IRAM 30 m telescope, and compare them to GMC/GMA properties of the Milky Way derived from CO literature data. For M33, we apply the Dendrogram algorithm on a novel 2D dust-derived NH2 map at an angular resolution of 18.2″ and on the 12CO(2 − 1) data and employ an XCO factor map instead of a constant value. Dust and CO-derived values are similar, with mean radii of ∼58 pc for the dust and ∼68 pc for CO, respectively. However, the largest GMAs have a radius of around 150 pc, similar to what was found in the Milky Way and other galaxies, suggesting a physical process that limits the size of GMAs. The less massive and smaller M33 galaxy also hosts less massive and lower-density GMCs compared to the Milky Way by an order of magnitude. Notably, the most massive (> a few 106 M) GMC population observed in the Milky Way is mainly missing in M33. The mean surface mass density of M33 is significantly smaller than that of the Milky Way and this is attributed to higher column densities of the largest GMCs in the Milky Way, despite similar GMC areas. We find no systematic gradients in physical properties with the galactocentric radius in M33. However, surface mass densities and masses are higher near the center, implying increased SF activity. In both galaxies, the central region contains ∼30% of the total molecular mass. The index of the power-law spectrum of the GMC masses across the entire disk of M33 is α = 2.3 ± 0.1 and α = 1.9 ± 0.1 for dust- and CO-derived data, respectively. We conclude that GMC properties in M33 and the Milky Way are largely similar, though M33 lacks high-mass GMCs, for which there is no straightforward explanation. Additionally, GMC properties are only weakly dependent on the galactic environment, with stellar feedback playing a role that needs further investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
MAGIS (Measuring Abundances of red super Giants with Infrared Spectroscopy) project Discovery of a cold giant planet and mass measurement of a hot super-Earth in the multi-planetary system WASP-132 Physical properties of newly active asteroid 2010 LH15 Inelastic H + H3+ collision rates and their impact on the determination of the excitation temperature of H3+ Asteroid detection polar equation calculation and graphical representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1