Zhenhai Wang, Lutao Yuan, Ying Ren, Sen Zhang, Hongyu Tian
{"title":"ADSTrack:用于视觉跟踪的自适应动态采样","authors":"Zhenhai Wang, Lutao Yuan, Ying Ren, Sen Zhang, Hongyu Tian","doi":"10.1007/s40747-024-01672-0","DOIUrl":null,"url":null,"abstract":"<p>The most common method for visual object tracking involves feeding an image pair comprising a template image and search region into a tracker. The tracker uses a backbone to process the information in the image pair. In pure Transformer-based frameworks, redundant information in image pairs exists throughout the tracking process and the corresponding negative tokens consume the same computational resources as the positive tokens while degrading the performance of the tracker. Therefore, we propose to solve this problem using an adaptive dynamic sampling strategy in a pure Transformer-based tracker, known as ADSTrack. ADSTrack progressively reduces irrelevant, redundant negative tokens in the search region that are not related to the tracked objectand the effect of noise generated by these tokens. The adaptive dynamic sampling strategy enhances the performance of the tracker by scoring and adaptive sampling of important tokens, and the number of tokens sampled varies according to the input image. Moreover, the adaptive dynamic sampling strategy is a parameterless token sampling strategy that does not use additional parameters. We add several extra tokens as auxiliary tokens to the backbone to further optimize the feature map. We extensively evaluate ADSTrack, achieving satisfactory results for seven test sets, including UAV123 and LaSOT.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"13 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADSTrack: adaptive dynamic sampling for visual tracking\",\"authors\":\"Zhenhai Wang, Lutao Yuan, Ying Ren, Sen Zhang, Hongyu Tian\",\"doi\":\"10.1007/s40747-024-01672-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The most common method for visual object tracking involves feeding an image pair comprising a template image and search region into a tracker. The tracker uses a backbone to process the information in the image pair. In pure Transformer-based frameworks, redundant information in image pairs exists throughout the tracking process and the corresponding negative tokens consume the same computational resources as the positive tokens while degrading the performance of the tracker. Therefore, we propose to solve this problem using an adaptive dynamic sampling strategy in a pure Transformer-based tracker, known as ADSTrack. ADSTrack progressively reduces irrelevant, redundant negative tokens in the search region that are not related to the tracked objectand the effect of noise generated by these tokens. The adaptive dynamic sampling strategy enhances the performance of the tracker by scoring and adaptive sampling of important tokens, and the number of tokens sampled varies according to the input image. Moreover, the adaptive dynamic sampling strategy is a parameterless token sampling strategy that does not use additional parameters. We add several extra tokens as auxiliary tokens to the backbone to further optimize the feature map. We extensively evaluate ADSTrack, achieving satisfactory results for seven test sets, including UAV123 and LaSOT.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01672-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01672-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ADSTrack: adaptive dynamic sampling for visual tracking
The most common method for visual object tracking involves feeding an image pair comprising a template image and search region into a tracker. The tracker uses a backbone to process the information in the image pair. In pure Transformer-based frameworks, redundant information in image pairs exists throughout the tracking process and the corresponding negative tokens consume the same computational resources as the positive tokens while degrading the performance of the tracker. Therefore, we propose to solve this problem using an adaptive dynamic sampling strategy in a pure Transformer-based tracker, known as ADSTrack. ADSTrack progressively reduces irrelevant, redundant negative tokens in the search region that are not related to the tracked objectand the effect of noise generated by these tokens. The adaptive dynamic sampling strategy enhances the performance of the tracker by scoring and adaptive sampling of important tokens, and the number of tokens sampled varies according to the input image. Moreover, the adaptive dynamic sampling strategy is a parameterless token sampling strategy that does not use additional parameters. We add several extra tokens as auxiliary tokens to the backbone to further optimize the feature map. We extensively evaluate ADSTrack, achieving satisfactory results for seven test sets, including UAV123 and LaSOT.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.