STDatav2:为对抗性攻击获取高效黑盒窃取技术

Xuxiang Sun;Gong Cheng;Hongda Li;Chunbo Lang;Junwei Han
{"title":"STDatav2:为对抗性攻击获取高效黑盒窃取技术","authors":"Xuxiang Sun;Gong Cheng;Hongda Li;Chunbo Lang;Junwei Han","doi":"10.1109/TPAMI.2024.3519803","DOIUrl":null,"url":null,"abstract":"On account of the extreme settings, stealing the black-box model without its training data is difficult in practice. On this topic, along the lines of data diversity, this paper substantially makes the following improvements based on our conference version (dubbed STDatav1, short for Surrogate Training Data). First, to mitigate the undesirable impacts of the potential mode collapse while training the generator, we propose the joint-data optimization scheme, which utilizes both the synthesized data and the proxy data to optimize the surrogate model. Second, we propose the self-conditional data synthesis framework, an interesting effort that builds the pseudo-class mapping framework via grouping class information extraction to hold the class-specific constraints while holding the diversity. Within this new framework, we inherit and integrate the class-specific constraints of STDatav1 and design a dual cross-entropy loss to fit this new framework. Finally, to facilitate comprehensive evaluations, we perform experiments on four commonly adopted datasets, and a total of eight kinds of models are employed. These assessments witness the considerable performance gains compared to our early work and demonstrate the competitive ability and promising potential of our approach.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2429-2445"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STDatav2: Accessing Efficient Black-Box Stealing for Adversarial Attacks\",\"authors\":\"Xuxiang Sun;Gong Cheng;Hongda Li;Chunbo Lang;Junwei Han\",\"doi\":\"10.1109/TPAMI.2024.3519803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On account of the extreme settings, stealing the black-box model without its training data is difficult in practice. On this topic, along the lines of data diversity, this paper substantially makes the following improvements based on our conference version (dubbed STDatav1, short for Surrogate Training Data). First, to mitigate the undesirable impacts of the potential mode collapse while training the generator, we propose the joint-data optimization scheme, which utilizes both the synthesized data and the proxy data to optimize the surrogate model. Second, we propose the self-conditional data synthesis framework, an interesting effort that builds the pseudo-class mapping framework via grouping class information extraction to hold the class-specific constraints while holding the diversity. Within this new framework, we inherit and integrate the class-specific constraints of STDatav1 and design a dual cross-entropy loss to fit this new framework. Finally, to facilitate comprehensive evaluations, we perform experiments on four commonly adopted datasets, and a total of eight kinds of models are employed. These assessments witness the considerable performance gains compared to our early work and demonstrate the competitive ability and promising potential of our approach.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 4\",\"pages\":\"2429-2445\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806846/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806846/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STDatav2: Accessing Efficient Black-Box Stealing for Adversarial Attacks
On account of the extreme settings, stealing the black-box model without its training data is difficult in practice. On this topic, along the lines of data diversity, this paper substantially makes the following improvements based on our conference version (dubbed STDatav1, short for Surrogate Training Data). First, to mitigate the undesirable impacts of the potential mode collapse while training the generator, we propose the joint-data optimization scheme, which utilizes both the synthesized data and the proxy data to optimize the surrogate model. Second, we propose the self-conditional data synthesis framework, an interesting effort that builds the pseudo-class mapping framework via grouping class information extraction to hold the class-specific constraints while holding the diversity. Within this new framework, we inherit and integrate the class-specific constraints of STDatav1 and design a dual cross-entropy loss to fit this new framework. Finally, to facilitate comprehensive evaluations, we perform experiments on four commonly adopted datasets, and a total of eight kinds of models are employed. These assessments witness the considerable performance gains compared to our early work and demonstrate the competitive ability and promising potential of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1