嵌入集成系统的单原子含铜氧化铈电催化剂实现了自然水体中氮的可持续回收

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL ACS ES&T engineering Pub Date : 2024-10-18 DOI:10.1021/acsestengg.4c0029910.1021/acsestengg.4c00299
Guangming Jiang*, Zixun Liu, Shuxian He, Yinan Liu, Xiangyi Tang, Xiaoshu Lv, Fan Dong and Hong Liu*, 
{"title":"嵌入集成系统的单原子含铜氧化铈电催化剂实现了自然水体中氮的可持续回收","authors":"Guangming Jiang*,&nbsp;Zixun Liu,&nbsp;Shuxian He,&nbsp;Yinan Liu,&nbsp;Xiangyi Tang,&nbsp;Xiaoshu Lv,&nbsp;Fan Dong and Hong Liu*,&nbsp;","doi":"10.1021/acsestengg.4c0029910.1021/acsestengg.4c00299","DOIUrl":null,"url":null,"abstract":"<p >Electrocatalytic reduction of nitrate (NO<sub>3</sub><sup>–</sup>) to ammonia (NH<sub>3</sub>) (NO<sub>3</sub>RR) coupled with NH<sub>3</sub> separation represents a sustainable approach to mitigate nitrate pollution and recycle nitrogen from contaminated water. Nevertheless, this process is deemed impractical for contaminated natural water bodies owing to the limited presence of NO<sub>3</sub><sup>–</sup>–N (&lt;50 mg L<sup>–1</sup>) and electrolytes and the relative abundance of scaling ions (Mg<sup>2+</sup> and Ca<sup>2+</sup>). Furthermore, copper (Cu), as the primary NO<sub>3</sub>RR catalyst, generally suffers from NO<sub>2</sub><sup>–</sup> accumulation and a prevalence of side hydrogen evolution. Herein, we develop an integrated system comprising sections of NO<sub>3</sub><sup>–</sup> enrichment and NO<sub>3</sub>RR and NH<sub>3</sub> collection, alongside a single-atom Cu-bearing CeO<sub>2</sub> catalyst (Cu<sub>1</sub>/CeO<sub>2</sub>) for NO<sub>3</sub>RR. With this system, diluted NO<sub>3</sub><sup>–</sup> is extracted from contaminated water using anion-exchange resins and then released into a concentrated NaCl aqueous solution, providing a solution with ample NO<sub>3</sub><sup>–</sup>–N (∼822 mg L<sup>–1</sup>) and electrolytes (∼1.7 M NaCl) while being free of scaling ions. Within this solution, the Cu<sub>1</sub>/CeO<sub>2</sub> demonstrates an exceptional high and steady NH<sub>3</sub>–N production rate of 7.8 g<sub>NH<sub>3</sub>–N</sub> g<sub>Cu</sub><sup>–1</sup> h<sup>–1</sup>, an NH<sub>3</sub>–N selectivity of 90.1%, and a Faradaic efficiency of 91.3%, outperforming the Cu nanoparticles (1.8 g<sub>NH<sub>3</sub>–N</sub> g<sub>Cu</sub><sup>–1</sup> h<sup>–1</sup>, 46.3%, and 53.0%). In situ experiments and theoretical computations reveal a dual-site NO<sub>3</sub>RR mechanism involving the electron-deficient Cu<sub>1</sub> site and adjacent oxygen vacancies, which collaborate to promote NO<sub>3</sub><sup>–</sup> adsorption and lower conversion barrier while inhibiting hydrogen evolution. Finally, we implemented the integrated system along the Yangtze River, achieving nitrate elimination and nitrogen recycling with a competitive energy consumption of 1.36–1.54 kW h mol<sub>N</sub><sup>–1</sup>.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"4 12","pages":"2912–2922 2912–2922"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Atom Copper-Bearing Cerium Oxide Electrocatalysts Embedded in an Integrated System Enable Sustainable Nitrogen Recycling from Natural Water Bodies\",\"authors\":\"Guangming Jiang*,&nbsp;Zixun Liu,&nbsp;Shuxian He,&nbsp;Yinan Liu,&nbsp;Xiangyi Tang,&nbsp;Xiaoshu Lv,&nbsp;Fan Dong and Hong Liu*,&nbsp;\",\"doi\":\"10.1021/acsestengg.4c0029910.1021/acsestengg.4c00299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrocatalytic reduction of nitrate (NO<sub>3</sub><sup>–</sup>) to ammonia (NH<sub>3</sub>) (NO<sub>3</sub>RR) coupled with NH<sub>3</sub> separation represents a sustainable approach to mitigate nitrate pollution and recycle nitrogen from contaminated water. Nevertheless, this process is deemed impractical for contaminated natural water bodies owing to the limited presence of NO<sub>3</sub><sup>–</sup>–N (&lt;50 mg L<sup>–1</sup>) and electrolytes and the relative abundance of scaling ions (Mg<sup>2+</sup> and Ca<sup>2+</sup>). Furthermore, copper (Cu), as the primary NO<sub>3</sub>RR catalyst, generally suffers from NO<sub>2</sub><sup>–</sup> accumulation and a prevalence of side hydrogen evolution. Herein, we develop an integrated system comprising sections of NO<sub>3</sub><sup>–</sup> enrichment and NO<sub>3</sub>RR and NH<sub>3</sub> collection, alongside a single-atom Cu-bearing CeO<sub>2</sub> catalyst (Cu<sub>1</sub>/CeO<sub>2</sub>) for NO<sub>3</sub>RR. With this system, diluted NO<sub>3</sub><sup>–</sup> is extracted from contaminated water using anion-exchange resins and then released into a concentrated NaCl aqueous solution, providing a solution with ample NO<sub>3</sub><sup>–</sup>–N (∼822 mg L<sup>–1</sup>) and electrolytes (∼1.7 M NaCl) while being free of scaling ions. Within this solution, the Cu<sub>1</sub>/CeO<sub>2</sub> demonstrates an exceptional high and steady NH<sub>3</sub>–N production rate of 7.8 g<sub>NH<sub>3</sub>–N</sub> g<sub>Cu</sub><sup>–1</sup> h<sup>–1</sup>, an NH<sub>3</sub>–N selectivity of 90.1%, and a Faradaic efficiency of 91.3%, outperforming the Cu nanoparticles (1.8 g<sub>NH<sub>3</sub>–N</sub> g<sub>Cu</sub><sup>–1</sup> h<sup>–1</sup>, 46.3%, and 53.0%). In situ experiments and theoretical computations reveal a dual-site NO<sub>3</sub>RR mechanism involving the electron-deficient Cu<sub>1</sub> site and adjacent oxygen vacancies, which collaborate to promote NO<sub>3</sub><sup>–</sup> adsorption and lower conversion barrier while inhibiting hydrogen evolution. Finally, we implemented the integrated system along the Yangtze River, achieving nitrate elimination and nitrogen recycling with a competitive energy consumption of 1.36–1.54 kW h mol<sub>N</sub><sup>–1</sup>.</p>\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":\"4 12\",\"pages\":\"2912–2922 2912–2922\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestengg.4c00299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

硝酸(NO3 -)电催化还原为氨(NH3) (NO3RR),结合NH3分离是缓解硝酸盐污染和从污染水体中回收氮的可持续途径。然而,由于NO3—N (<50 mg L-1)和电解质的有限存在以及垢离子(Mg2+和Ca2+)的相对丰度,该过程被认为对受污染的天然水体是不切实际的。此外,铜(Cu)作为主要的NO3RR催化剂,普遍存在NO2 -积累和侧析氢现象。在此,我们开发了一个集成系统,包括NO3 -富集和NO3RR和NH3收集部分,以及用于NO3RR的单原子含cu CeO2催化剂(Cu1/CeO2)。使用该系统,使用阴离子交换树脂从污染水中提取稀释的NO3 -,然后释放到浓缩的NaCl水溶液中,提供具有充足的NO3—N (~ 822 mg L-1)和电解质(~ 1.7 M NaCl)的溶液,同时没有结垢离子。在该溶液中,Cu1/CeO2的NH3-N生成速率为7.8 gNH3-N gCu-1 h-1, NH3-N选择性为90.1%,法拉第效率为91.3%,优于Cu纳米颗粒(1.8 gNH3-N gCu-1 h-1, 46.3%和53.0%)。原位实验和理论计算揭示了NO3RR的双位点机制,包括缺电子Cu1位点和邻近的氧空位,它们共同促进NO3 -吸附和降低转化势垒,同时抑制析氢。最后,我们在长江流域实施了综合系统,实现了硝酸盐消除和氮循环,具有竞争力的能耗为1.36-1.54 kW h molN-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-Atom Copper-Bearing Cerium Oxide Electrocatalysts Embedded in an Integrated System Enable Sustainable Nitrogen Recycling from Natural Water Bodies

Electrocatalytic reduction of nitrate (NO3) to ammonia (NH3) (NO3RR) coupled with NH3 separation represents a sustainable approach to mitigate nitrate pollution and recycle nitrogen from contaminated water. Nevertheless, this process is deemed impractical for contaminated natural water bodies owing to the limited presence of NO3–N (<50 mg L–1) and electrolytes and the relative abundance of scaling ions (Mg2+ and Ca2+). Furthermore, copper (Cu), as the primary NO3RR catalyst, generally suffers from NO2 accumulation and a prevalence of side hydrogen evolution. Herein, we develop an integrated system comprising sections of NO3 enrichment and NO3RR and NH3 collection, alongside a single-atom Cu-bearing CeO2 catalyst (Cu1/CeO2) for NO3RR. With this system, diluted NO3 is extracted from contaminated water using anion-exchange resins and then released into a concentrated NaCl aqueous solution, providing a solution with ample NO3–N (∼822 mg L–1) and electrolytes (∼1.7 M NaCl) while being free of scaling ions. Within this solution, the Cu1/CeO2 demonstrates an exceptional high and steady NH3–N production rate of 7.8 gNH3–N gCu–1 h–1, an NH3–N selectivity of 90.1%, and a Faradaic efficiency of 91.3%, outperforming the Cu nanoparticles (1.8 gNH3–N gCu–1 h–1, 46.3%, and 53.0%). In situ experiments and theoretical computations reveal a dual-site NO3RR mechanism involving the electron-deficient Cu1 site and adjacent oxygen vacancies, which collaborate to promote NO3 adsorption and lower conversion barrier while inhibiting hydrogen evolution. Finally, we implemented the integrated system along the Yangtze River, achieving nitrate elimination and nitrogen recycling with a competitive energy consumption of 1.36–1.54 kW h molN–1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Broad Influence of Quorum Sensing in Environmental Biotechnology: From Mechanisms to Applications Innovative Catalysis Approaches for Methane Utilization Cooking Oil Fumes: A Comprehensive Review of Emission Characteristics and Catalytic Oxidation Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1