吲哚胺2,3 -双加氧酶通过PI3K/Akt/mTOR通路调控T淋巴细胞分化促进胃癌细胞生长

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Biophysics Pub Date : 2024-12-18 DOI:10.1007/s12013-024-01641-x
Xiulian Xu, Huayan Yuan, Qijun Lv, Zhenjiang Wu, Wenhai Fan, Jianjun Liu
{"title":"吲哚胺2,3 -双加氧酶通过PI3K/Akt/mTOR通路调控T淋巴细胞分化促进胃癌细胞生长","authors":"Xiulian Xu, Huayan Yuan, Qijun Lv, Zhenjiang Wu, Wenhai Fan, Jianjun Liu","doi":"10.1007/s12013-024-01641-x","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the regulatory mechanism of indoleamine 2, 3-dioxygenase (IDO) in T lymphocyte differentiation and its role in promoting the growth of gastric cancer (GC) cells through the PI3K/Akt/mTOR pathway. GC cell lines (MFC and NCI-N87) and PBMC cells were co-cultured and IDO inhibitor 1-methyl-tryptophan (1-MT) was added. The proliferation was detected by CCK-8, the apoptosis was detected by flow cytometry, and the contents of TNF-α, IL-1β, IL-6, IL-8, and INF-γ were detected by ELISA. The expression levels of PI3K, p-PI3K, Akt, p-Akt, mTOR, and p-mTOR were tested using Western blot, and the proportion of CD4<sup>+</sup>/CD8<sup>+</sup>, CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup>Treg cells was detected by flow cytometry. C57BL/6 mice were used to establish the MFC GC mouse model and treated with 1-MT. The changes in body weight and tumor diameter were measured. Ki-67, CD4<sup>+</sup>, CD8<sup>+</sup>, and CD25<sup>+</sup> expressions were detected by immunohistochemistry. IDO promoted the proliferation of MFC and NCI-N87 cells, inhibited apoptosis, and decreased the levels of TNF-α, IL-1β, IL-6, IL-8, and INF-γ in the supernatant after co-culture with BPMC. The expressions of p-AKT, p-mTOR, and p-PI3K increased after 1-MT treatment. The proportion of CD4<sup>+</sup>/CD8<sup>+</sup> cells was increased and the proportion of Treg cells was decreased in PBMC cells after the addition of 1-MT. Overexpression of IDO suppressed T cells differentiation by inhibiting the PI3K/Akt/mTOR pathway. In vivo, 1-MT treatment reduced the tumor size and weight, increased CD4<sup>+</sup> and CD8<sup>+</sup> positive area proportion, and decreased Ki-67 and CD25<sup>+</sup> positive area proportion. Co-culture of GC cells and immune cells promotes the proliferation of GC cells and inhibits apoptosis, which can be reversed by 1-MT. IDO may suppress the proliferation of T lymphocyte through inhibiting the PI3K/Akt/mTOR signaling pathway. This provides new evidence for the potential of exploiting IDO inhibitors for GC treatment.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indoleamine 2, 3-dioxygenase Regulates the Differentiation of T Lymphocytes to Promote the Growth of Gastric Cancer Cells through the PI3K/Akt/mTOR Pathway.\",\"authors\":\"Xiulian Xu, Huayan Yuan, Qijun Lv, Zhenjiang Wu, Wenhai Fan, Jianjun Liu\",\"doi\":\"10.1007/s12013-024-01641-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To investigate the regulatory mechanism of indoleamine 2, 3-dioxygenase (IDO) in T lymphocyte differentiation and its role in promoting the growth of gastric cancer (GC) cells through the PI3K/Akt/mTOR pathway. GC cell lines (MFC and NCI-N87) and PBMC cells were co-cultured and IDO inhibitor 1-methyl-tryptophan (1-MT) was added. The proliferation was detected by CCK-8, the apoptosis was detected by flow cytometry, and the contents of TNF-α, IL-1β, IL-6, IL-8, and INF-γ were detected by ELISA. The expression levels of PI3K, p-PI3K, Akt, p-Akt, mTOR, and p-mTOR were tested using Western blot, and the proportion of CD4<sup>+</sup>/CD8<sup>+</sup>, CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup>Treg cells was detected by flow cytometry. C57BL/6 mice were used to establish the MFC GC mouse model and treated with 1-MT. The changes in body weight and tumor diameter were measured. Ki-67, CD4<sup>+</sup>, CD8<sup>+</sup>, and CD25<sup>+</sup> expressions were detected by immunohistochemistry. IDO promoted the proliferation of MFC and NCI-N87 cells, inhibited apoptosis, and decreased the levels of TNF-α, IL-1β, IL-6, IL-8, and INF-γ in the supernatant after co-culture with BPMC. The expressions of p-AKT, p-mTOR, and p-PI3K increased after 1-MT treatment. The proportion of CD4<sup>+</sup>/CD8<sup>+</sup> cells was increased and the proportion of Treg cells was decreased in PBMC cells after the addition of 1-MT. Overexpression of IDO suppressed T cells differentiation by inhibiting the PI3K/Akt/mTOR pathway. In vivo, 1-MT treatment reduced the tumor size and weight, increased CD4<sup>+</sup> and CD8<sup>+</sup> positive area proportion, and decreased Ki-67 and CD25<sup>+</sup> positive area proportion. Co-culture of GC cells and immune cells promotes the proliferation of GC cells and inhibits apoptosis, which can be reversed by 1-MT. IDO may suppress the proliferation of T lymphocyte through inhibiting the PI3K/Akt/mTOR signaling pathway. This provides new evidence for the potential of exploiting IDO inhibitors for GC treatment.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01641-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01641-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的探讨吲哚胺2,3 -双加氧酶(IDO)在T淋巴细胞分化中的调控机制及其通过PI3K/Akt/mTOR通路促进胃癌(GC)细胞生长的作用。GC细胞系(MFC和NCI-N87)与PBMC细胞共培养,加入IDO抑制剂1-甲基色氨酸(1-MT)。CCK-8法检测细胞增殖,流式细胞术检测细胞凋亡,ELISA法检测TNF-α、IL-1β、IL-6、IL-8、INF-γ含量。Western blot检测PI3K、p-PI3K、Akt、p-Akt、mTOR、p-mTOR的表达水平,流式细胞术检测CD4+/CD8+、CD4+CD25+Foxp3+Treg细胞比例。采用C57BL/6小鼠建立MFC GC小鼠模型,并给予1-MT处理。测量体重和肿瘤直径的变化。免疫组织化学检测Ki-67、CD4+、CD8+、CD25+的表达。IDO能促进MFC和NCI-N87细胞的增殖,抑制细胞凋亡,降低与BPMC共培养后上清中TNF-α、IL-1β、IL-6、IL-8和INF-γ的水平。1-MT治疗后,p-AKT、p-mTOR、p-PI3K表达升高。添加1-MT后,PBMC细胞中CD4+/CD8+细胞比例升高,Treg细胞比例降低。IDO过表达通过抑制PI3K/Akt/mTOR通路抑制T细胞分化。在体内,1-MT治疗可减小肿瘤的大小和重量,增加CD4+和CD8+阳性面积比例,降低Ki-67和CD25+阳性面积比例。GC细胞与免疫细胞共培养可促进GC细胞增殖,抑制凋亡,1-MT可逆转GC细胞凋亡。IDO可能通过抑制PI3K/Akt/mTOR信号通路抑制T淋巴细胞的增殖。这为开发IDO抑制剂治疗GC的潜力提供了新的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indoleamine 2, 3-dioxygenase Regulates the Differentiation of T Lymphocytes to Promote the Growth of Gastric Cancer Cells through the PI3K/Akt/mTOR Pathway.

To investigate the regulatory mechanism of indoleamine 2, 3-dioxygenase (IDO) in T lymphocyte differentiation and its role in promoting the growth of gastric cancer (GC) cells through the PI3K/Akt/mTOR pathway. GC cell lines (MFC and NCI-N87) and PBMC cells were co-cultured and IDO inhibitor 1-methyl-tryptophan (1-MT) was added. The proliferation was detected by CCK-8, the apoptosis was detected by flow cytometry, and the contents of TNF-α, IL-1β, IL-6, IL-8, and INF-γ were detected by ELISA. The expression levels of PI3K, p-PI3K, Akt, p-Akt, mTOR, and p-mTOR were tested using Western blot, and the proportion of CD4+/CD8+, CD4+CD25+Foxp3+Treg cells was detected by flow cytometry. C57BL/6 mice were used to establish the MFC GC mouse model and treated with 1-MT. The changes in body weight and tumor diameter were measured. Ki-67, CD4+, CD8+, and CD25+ expressions were detected by immunohistochemistry. IDO promoted the proliferation of MFC and NCI-N87 cells, inhibited apoptosis, and decreased the levels of TNF-α, IL-1β, IL-6, IL-8, and INF-γ in the supernatant after co-culture with BPMC. The expressions of p-AKT, p-mTOR, and p-PI3K increased after 1-MT treatment. The proportion of CD4+/CD8+ cells was increased and the proportion of Treg cells was decreased in PBMC cells after the addition of 1-MT. Overexpression of IDO suppressed T cells differentiation by inhibiting the PI3K/Akt/mTOR pathway. In vivo, 1-MT treatment reduced the tumor size and weight, increased CD4+ and CD8+ positive area proportion, and decreased Ki-67 and CD25+ positive area proportion. Co-culture of GC cells and immune cells promotes the proliferation of GC cells and inhibits apoptosis, which can be reversed by 1-MT. IDO may suppress the proliferation of T lymphocyte through inhibiting the PI3K/Akt/mTOR signaling pathway. This provides new evidence for the potential of exploiting IDO inhibitors for GC treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
期刊最新文献
FOXM1, a super enhancer-associated gene, is related to poorer prognosis and gemcitabine resistance in pancreatic cancer. Numerical Simulation of InP and MXene-Based SPR Sensor for Different Cancerous Cells Detection. Ophiopogonin D Alleviates Sepsis-Induced Acute Lung Injury Through Improving Microvascular Endothelial Barrier Dysfunction via Inhibition of HIF-1α-VEGF Pathway. Correction: Berberine and Cyperus Rotundus Extract Nanoformulations Protect the Rats Against Staphylococcus-Induced Mastitis via Antioxidant and Anti-Inflammatory Activities: Role of MAPK Signaling. Neurotensin via Type I Receptor Modulates the Endotoxemia Induced Oxido-Inflammatory Stress on the Sympathetic Adrenomedullary System of Mice Regulating NF-κβ/Nor-Epinephrine Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1