利用先进的计算方法研究毛鳞毛蕨地上部分对癌细胞的代谢组学和抗癌潜力。

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Current pharmaceutical design Pub Date : 2024-12-18 DOI:10.2174/0113816128349549241025150229
Khalil Said, Mamoona Rauf, Sumera Afzal Khan, Anwar Hussain, Alaa S Alhegaili, Sajid Hussain, Sajid Ali, Muhammad Hamayun
{"title":"利用先进的计算方法研究毛鳞毛蕨地上部分对癌细胞的代谢组学和抗癌潜力。","authors":"Khalil Said, Mamoona Rauf, Sumera Afzal Khan, Anwar Hussain, Alaa S Alhegaili, Sajid Hussain, Sajid Ali, Muhammad Hamayun","doi":"10.2174/0113816128349549241025150229","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Dryopteris ramosa is a high-altitude plant of moist and shady habitat. Its aerial parts are edible and orally administered as an antibiotic and effective aphrodisiac. They are also used as pesticides, astringents, and febrifuges.</p><p><strong>Aim: </strong>The present study aimed to elucidate the plant's medicinal potential as an anticancer agent. Extracts of Dryopteris ramosa were examined for cytotoxic effects against AGS, A549, and HCT116 cell lines. The project also aimed to evaluate the phytochemical constitutents of the plant. For this purpose, GC-ToF-MS analysis was executed to identify the bioactive compounds in the aerial parts extract of Dryopteris ramosa. As a result, 93 different phytochemicals were identified from the spectral properties of GC-ToF-MS which contain 19 compounds of high peaks having reported anti-inflammatory, Anti-diabetic, Antibacterial, Analgesic, and antioxidant potential.</p><p><strong>Methods: </strong>Three different cell lines have been treated against Ethanol, Methanol, Ethyl acetate, Water, Chloroform, Acetone, and n-hexane extracts from the aerial parts of Dryopteris ramosa. These cell lines were checked and were ranked in lethality based on IC50 value. The extract samples were processed as serial dilution from high concentrations (500 ug/ml). All the three cell lines were treated for 48 hours.</p><p><strong>Results: </strong>Extracts showed a significant effect in different cell lines (based on IC50 less than 200 ug/ml). Performing the in-vitro anticancer activity against the three different cell lines in Ethyl Acetate, Methanol, nhexane, Chloroform and Acetone extract of Dryopteris indicated that anticancer activity of the plant is high against AGS and A549 cell line while less prominent in HTC116 cell lines through MTT Assay. Insilico drug-likeness and ADMET analysis were studied of the compounds, that exhibit considerable drug likenesses, phytochemical medicinal chemistry, and a promising ADMET score and no toxicity. The candidate compounds were chosen for further elucidation by Molecular Docking and dynamic simulations. Employing the molecular docking approach for virtual screening of the phytochemicals it was found that the compounds Germacrene showed remarkable results towards BCL2 with -7Kcal/Mol and a-D-(+)-Xylopyranose showed significant docking results towards 5P21 with -7.1Kcal/Mol.</p><p><strong>Conclusion: </strong>For multi-scale frames structural aberrations and fluctuations identification of the docked complexes, a molecular dynamics analysis was performed for a 100 ps simulation run by accessing the online tool of MDweb simulations. These molecular docking and simulation analyses also revealed that both the phytochemicals have a stable interaction with the cancer-related proteins BCL2 and 5P21.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolomics and Anticancer Potential of the Aerial Parts of Dryopteris ramosa against Cancerous Cell Lines Assisted with Advanced Computational Approaches.\",\"authors\":\"Khalil Said, Mamoona Rauf, Sumera Afzal Khan, Anwar Hussain, Alaa S Alhegaili, Sajid Hussain, Sajid Ali, Muhammad Hamayun\",\"doi\":\"10.2174/0113816128349549241025150229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Dryopteris ramosa is a high-altitude plant of moist and shady habitat. Its aerial parts are edible and orally administered as an antibiotic and effective aphrodisiac. They are also used as pesticides, astringents, and febrifuges.</p><p><strong>Aim: </strong>The present study aimed to elucidate the plant's medicinal potential as an anticancer agent. Extracts of Dryopteris ramosa were examined for cytotoxic effects against AGS, A549, and HCT116 cell lines. The project also aimed to evaluate the phytochemical constitutents of the plant. For this purpose, GC-ToF-MS analysis was executed to identify the bioactive compounds in the aerial parts extract of Dryopteris ramosa. As a result, 93 different phytochemicals were identified from the spectral properties of GC-ToF-MS which contain 19 compounds of high peaks having reported anti-inflammatory, Anti-diabetic, Antibacterial, Analgesic, and antioxidant potential.</p><p><strong>Methods: </strong>Three different cell lines have been treated against Ethanol, Methanol, Ethyl acetate, Water, Chloroform, Acetone, and n-hexane extracts from the aerial parts of Dryopteris ramosa. These cell lines were checked and were ranked in lethality based on IC50 value. The extract samples were processed as serial dilution from high concentrations (500 ug/ml). All the three cell lines were treated for 48 hours.</p><p><strong>Results: </strong>Extracts showed a significant effect in different cell lines (based on IC50 less than 200 ug/ml). Performing the in-vitro anticancer activity against the three different cell lines in Ethyl Acetate, Methanol, nhexane, Chloroform and Acetone extract of Dryopteris indicated that anticancer activity of the plant is high against AGS and A549 cell line while less prominent in HTC116 cell lines through MTT Assay. Insilico drug-likeness and ADMET analysis were studied of the compounds, that exhibit considerable drug likenesses, phytochemical medicinal chemistry, and a promising ADMET score and no toxicity. The candidate compounds were chosen for further elucidation by Molecular Docking and dynamic simulations. Employing the molecular docking approach for virtual screening of the phytochemicals it was found that the compounds Germacrene showed remarkable results towards BCL2 with -7Kcal/Mol and a-D-(+)-Xylopyranose showed significant docking results towards 5P21 with -7.1Kcal/Mol.</p><p><strong>Conclusion: </strong>For multi-scale frames structural aberrations and fluctuations identification of the docked complexes, a molecular dynamics analysis was performed for a 100 ps simulation run by accessing the online tool of MDweb simulations. These molecular docking and simulation analyses also revealed that both the phytochemicals have a stable interaction with the cancer-related proteins BCL2 and 5P21.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128349549241025150229\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128349549241025150229","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

简介:毛毛鳞毛蕨是一种湿润阴凉的高海拔植物。它的地上部分可以食用,也可以作为抗生素和有效的春药口服。它们也被用作杀虫剂、收敛剂和热敷剂。目的:阐明该植物作为抗癌药物的药用潜力。研究了毛鳞毛蕨提取物对AGS、A549和HCT116细胞株的细胞毒作用。该项目还旨在评估该植物的植物化学成分。为此,采用气相色谱- tof - ms分析方法对毛鳞毛蕨气部提取物中的生物活性成分进行了鉴定。结果,从GC-ToF-MS的光谱性质中鉴定出93种不同的植物化学物质,其中19种化合物具有抗炎、抗糖尿病、抗菌、镇痛和抗氧化的活性。方法:对三种不同的细胞系分别进行乙醇、甲醇、乙酸乙酯、水、氯仿、丙酮和正己烷萃取处理。对这些细胞系进行检查,并根据IC50值对致死性进行排序。提取液样品经高浓度(500 ug/ml)连续稀释处理。三种细胞系均处理48小时。结果:提取物对不同细胞系均有显著作用(以IC50 < 200 ug/ml为基础)。MTT法测定毛蕨乙酸乙酯、甲醇、正己烷、氯仿和丙酮提取物对三种不同细胞系的体外抗癌活性表明,毛蕨对AGS和A549细胞系的抗癌活性较高,而对HTC116细胞系的抗癌活性较低。对化合物进行了计算机药物相似性和ADMET分析,这些化合物具有相当大的药物相似性,植物化学药物化学,ADMET评分有希望并且没有毒性。通过分子对接和动力学模拟,选择候选化合物进行进一步的解析。采用分子对接方法对植物化学物质进行虚拟筛选,发现Germacrene对BCL2具有- 7kcal /Mol的显著对接效果,a-D-(+)- xylopyranose对5P21具有-7.1 kcal /Mol的显著对接效果。结论:通过访问MDweb模拟在线工具,对对接物的多尺度框架结构畸变和波动识别进行了100 ps模拟的分子动力学分析。这些分子对接和模拟分析还揭示了这两种植物化学物质与癌症相关蛋白BCL2和5P21有稳定的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolomics and Anticancer Potential of the Aerial Parts of Dryopteris ramosa against Cancerous Cell Lines Assisted with Advanced Computational Approaches.

Introduction: Dryopteris ramosa is a high-altitude plant of moist and shady habitat. Its aerial parts are edible and orally administered as an antibiotic and effective aphrodisiac. They are also used as pesticides, astringents, and febrifuges.

Aim: The present study aimed to elucidate the plant's medicinal potential as an anticancer agent. Extracts of Dryopteris ramosa were examined for cytotoxic effects against AGS, A549, and HCT116 cell lines. The project also aimed to evaluate the phytochemical constitutents of the plant. For this purpose, GC-ToF-MS analysis was executed to identify the bioactive compounds in the aerial parts extract of Dryopteris ramosa. As a result, 93 different phytochemicals were identified from the spectral properties of GC-ToF-MS which contain 19 compounds of high peaks having reported anti-inflammatory, Anti-diabetic, Antibacterial, Analgesic, and antioxidant potential.

Methods: Three different cell lines have been treated against Ethanol, Methanol, Ethyl acetate, Water, Chloroform, Acetone, and n-hexane extracts from the aerial parts of Dryopteris ramosa. These cell lines were checked and were ranked in lethality based on IC50 value. The extract samples were processed as serial dilution from high concentrations (500 ug/ml). All the three cell lines were treated for 48 hours.

Results: Extracts showed a significant effect in different cell lines (based on IC50 less than 200 ug/ml). Performing the in-vitro anticancer activity against the three different cell lines in Ethyl Acetate, Methanol, nhexane, Chloroform and Acetone extract of Dryopteris indicated that anticancer activity of the plant is high against AGS and A549 cell line while less prominent in HTC116 cell lines through MTT Assay. Insilico drug-likeness and ADMET analysis were studied of the compounds, that exhibit considerable drug likenesses, phytochemical medicinal chemistry, and a promising ADMET score and no toxicity. The candidate compounds were chosen for further elucidation by Molecular Docking and dynamic simulations. Employing the molecular docking approach for virtual screening of the phytochemicals it was found that the compounds Germacrene showed remarkable results towards BCL2 with -7Kcal/Mol and a-D-(+)-Xylopyranose showed significant docking results towards 5P21 with -7.1Kcal/Mol.

Conclusion: For multi-scale frames structural aberrations and fluctuations identification of the docked complexes, a molecular dynamics analysis was performed for a 100 ps simulation run by accessing the online tool of MDweb simulations. These molecular docking and simulation analyses also revealed that both the phytochemicals have a stable interaction with the cancer-related proteins BCL2 and 5P21.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
期刊最新文献
Fabrication of Mastic Gum Resin Tethered Phospholipid Nanocarriers for the Evaluation and Enhancement of Anti-inflammatory and Anti-bacterial Effects. Advancements in Managing Schizophrenia through Classical Approaches, Mechanisms, and Deep Brain Stimulation. Mesenchymal Stem Cell-conditioned Medium Attenuated CoCl2-induced Injury of Renal Tubular Epithelial Cells by Inhibiting NCOA1, HIF-1α, and Sox9. 3',4'-Dihydroxy Flavonol (DiOHF) Exerting a Positive Effect on Neurogenesis and Retinal Damage in Experimental Brain Ischemia-Reperfusion of Rats. Crosstalk: Biochemical Signatures and Clinical Implications in Rare Hereditary Hemolytic Anemias (Hereditary Spherocytosis).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1