利用一维卷积和旋转的高能SPECT中计算效率高的准直-检测器响应补偿。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-01-10 DOI:10.1088/1361-6560/ada10a
Lucas A Polson, Pedro Esquinas, Sara Kurkowska, Chenguang Li, Peyman Sheikhzadeh, Mehrshad Abbassi, Saeed Farzanehfar, Seyyede Mirabedian, Carlos Uribe, Arman Rahmim
{"title":"利用一维卷积和旋转的高能SPECT中计算效率高的准直-检测器响应补偿。","authors":"Lucas A Polson, Pedro Esquinas, Sara Kurkowska, Chenguang Li, Peyman Sheikhzadeh, Mehrshad Abbassi, Saeed Farzanehfar, Seyyede Mirabedian, Carlos Uribe, Arman Rahmim","doi":"10.1088/1361-6560/ada10a","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Modeling of the collimator-detector response (CDR) in single photon emission computed tomography (SPECT) reconstruction enables improved resolution and accuracy, and is thus important for quantitative imaging applications such as dosimetry. The implementation of CDR modeling, however, can become a computational bottleneck when there are substantial components of septal penetration and scatter in the acquired data, since a direct convolution-based approach requires large 2D kernels. This work proposes a 1D convolution and rotation-based CDR model that reduces reconstruction times but maintains consistency with models that employ 2D convolutions. To enable open-source development and use of these models in image reconstruction, we release a SPECTPSFToolbox repository for the PyTomography project on GitHub.<i>Approach</i>. A 1D/rotation-based CDR model was formulated and subsequently fit to Monte Carlo (MC) point source data representative of<sup>177</sup>Lu,<sup>131</sup>I, and<sup>225</sup>Ac imaging. Computation times of (i) the proposed 1D/rotation-based model and (ii) a traditional model that uses 2D convolutions were compared for typical SPECT matrix sizes. Both CDR models were then used in the reconstruction of MC, physical phantom, and patient data; the models were compared by quantifying total counts in hot regions of interest (ROIs) and activity contrast between hot ROIs and background regions.<i>Results</i>. For typical matrix sizes in SPECT reconstruction, application of the 1D/rotation-based model provides a two-fold computational speed-up over the 2D model when running on GPU. Only small differences between the 1D/rotation-based and 2D models (order of 1%) were obtained for count and contrast quantification in select ROIs.<i>Significance</i>. A technique for CDR modeling in SPECT was proposed that (i) significantly speeds up reconstruction times, and (ii) yields nearly identical reconstructions to traditional 2D convolution based CDR techniques. The released toolbox will permit open-source development of similar models for different isotopes and collimators.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computationally efficient collimator-detector response compensation in high energy SPECT using 1D convolutions and rotations.\",\"authors\":\"Lucas A Polson, Pedro Esquinas, Sara Kurkowska, Chenguang Li, Peyman Sheikhzadeh, Mehrshad Abbassi, Saeed Farzanehfar, Seyyede Mirabedian, Carlos Uribe, Arman Rahmim\",\"doi\":\"10.1088/1361-6560/ada10a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Modeling of the collimator-detector response (CDR) in single photon emission computed tomography (SPECT) reconstruction enables improved resolution and accuracy, and is thus important for quantitative imaging applications such as dosimetry. The implementation of CDR modeling, however, can become a computational bottleneck when there are substantial components of septal penetration and scatter in the acquired data, since a direct convolution-based approach requires large 2D kernels. This work proposes a 1D convolution and rotation-based CDR model that reduces reconstruction times but maintains consistency with models that employ 2D convolutions. To enable open-source development and use of these models in image reconstruction, we release a SPECTPSFToolbox repository for the PyTomography project on GitHub.<i>Approach</i>. A 1D/rotation-based CDR model was formulated and subsequently fit to Monte Carlo (MC) point source data representative of<sup>177</sup>Lu,<sup>131</sup>I, and<sup>225</sup>Ac imaging. Computation times of (i) the proposed 1D/rotation-based model and (ii) a traditional model that uses 2D convolutions were compared for typical SPECT matrix sizes. Both CDR models were then used in the reconstruction of MC, physical phantom, and patient data; the models were compared by quantifying total counts in hot regions of interest (ROIs) and activity contrast between hot ROIs and background regions.<i>Results</i>. For typical matrix sizes in SPECT reconstruction, application of the 1D/rotation-based model provides a two-fold computational speed-up over the 2D model when running on GPU. Only small differences between the 1D/rotation-based and 2D models (order of 1%) were obtained for count and contrast quantification in select ROIs.<i>Significance</i>. A technique for CDR modeling in SPECT was proposed that (i) significantly speeds up reconstruction times, and (ii) yields nearly identical reconstructions to traditional 2D convolution based CDR techniques. The released toolbox will permit open-source development of similar models for different isotopes and collimators.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ada10a\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ada10a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:对SPECT重建中的准直-探测器响应(CDR)进行建模可以提高分辨率和准确性,因此对定量成像应用(如剂量学)非常重要。然而,当所获取的数据中存在大量的间隔穿透和散射成分时,CDR建模的实现可能成为计算瓶颈,因为基于直接卷积的方法需要大型2D核。这项工作提出了一种基于1D卷积和旋转的CDR模型,该模型减少了重建时间,但与使用2D卷积的模型保持一致性。为了在图像重建中启用开源开发和使用这些模型,我们在GitHub上为PyTomography项目发布了一个specpsftoolbox存储库。方法:制定了基于1D/旋转的CDR模型,并随后拟合了具有代表性的Lu-177、I-131和Ac-225成像的蒙特卡罗点源数据。比较了(i)提出的基于一维/旋转的模型和(ii)使用二维卷积的传统模型的典型SPECT矩阵大小的计算时间。然后将两种CDR模型用于蒙特卡罗重建、物理幻像和患者数据;通过量化热点兴趣区域(roi)的总数以及热点兴趣区域与背景区域之间的活动对比,对模型进行了比较。结果:对于SPECT重建中典型的矩阵大小,在GPU上运行时,应用基于1D/旋转的模型比2D模型提供了两倍的计算速度。在选择的roi中,基于1D/旋转的模型与2D模型之间只有很小的差异(约为1%)。意义:提出了一种在SPECT中进行CDR建模的技术,该技术(i)显著加快了重建时间,(ii)产生的重建结果与传统的基于二维卷积的CDR技术几乎相同。发布的工具箱将允许开源开发不同同位素和准直器的类似模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computationally efficient collimator-detector response compensation in high energy SPECT using 1D convolutions and rotations.

Objective. Modeling of the collimator-detector response (CDR) in single photon emission computed tomography (SPECT) reconstruction enables improved resolution and accuracy, and is thus important for quantitative imaging applications such as dosimetry. The implementation of CDR modeling, however, can become a computational bottleneck when there are substantial components of septal penetration and scatter in the acquired data, since a direct convolution-based approach requires large 2D kernels. This work proposes a 1D convolution and rotation-based CDR model that reduces reconstruction times but maintains consistency with models that employ 2D convolutions. To enable open-source development and use of these models in image reconstruction, we release a SPECTPSFToolbox repository for the PyTomography project on GitHub.Approach. A 1D/rotation-based CDR model was formulated and subsequently fit to Monte Carlo (MC) point source data representative of177Lu,131I, and225Ac imaging. Computation times of (i) the proposed 1D/rotation-based model and (ii) a traditional model that uses 2D convolutions were compared for typical SPECT matrix sizes. Both CDR models were then used in the reconstruction of MC, physical phantom, and patient data; the models were compared by quantifying total counts in hot regions of interest (ROIs) and activity contrast between hot ROIs and background regions.Results. For typical matrix sizes in SPECT reconstruction, application of the 1D/rotation-based model provides a two-fold computational speed-up over the 2D model when running on GPU. Only small differences between the 1D/rotation-based and 2D models (order of 1%) were obtained for count and contrast quantification in select ROIs.Significance. A technique for CDR modeling in SPECT was proposed that (i) significantly speeds up reconstruction times, and (ii) yields nearly identical reconstructions to traditional 2D convolution based CDR techniques. The released toolbox will permit open-source development of similar models for different isotopes and collimators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. A multiplexing method based on multidimensional readout method. Diffusion transformer model with compact prior for low-dose PET reconstruction. A dual-domain network with division residual connection and feature fusion for CBCT scatter correction. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1