肿瘤学剂量发现研究设计的可能性视角。

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2024-12-18 DOI:10.1002/pst.2445
Zhiwei Zhang
{"title":"肿瘤学剂量发现研究设计的可能性视角。","authors":"Zhiwei Zhang","doi":"10.1002/pst.2445","DOIUrl":null,"url":null,"abstract":"<p><p>Dose-finding studies in oncology often include an up-and-down dose transition rule that assigns a dose to each cohort of patients based on accumulating data on dose-limiting toxicity (DLT) events. In making a dose transition decision, a key scientific question is whether the true DLT rate of the current dose exceeds the target DLT rate, and the statistical question is how to evaluate the statistical evidence in the available DLT data with respect to that scientific question. This article introduces generalized likelihood ratios (GLRs) that can be used to measure statistical evidence and support dose transition decisions. Applying this approach to a single-dose likelihood leads to a GLR-based interval design with three parameters: the target DLT rate and two GLR cut-points representing the levels of evidence required for dose escalation and de-escalation. This design gives a likelihood interpretation to each existing interval design and provides a unified framework for comparing different interval designs in terms of how much evidence is required for escalation and de-escalation. A GLR-based comparison of commonly used interval designs reveals important differences and motivates alternative designs that reduce over-treatment while maintaining MTD estimation accuracy. The GLR-based approach can also be applied to a joint likelihood based on a nonparametric (e.g., isotonic regression) model or a parametric model. Simulation results indicate that the isotonic GLR performs similarly to the single-dose GLR but the GLR based on a parsimonious model can improve MTD estimation when the underlying model is correct.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Likelihood Perspective on Dose-Finding Study Designs in Oncology.\",\"authors\":\"Zhiwei Zhang\",\"doi\":\"10.1002/pst.2445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dose-finding studies in oncology often include an up-and-down dose transition rule that assigns a dose to each cohort of patients based on accumulating data on dose-limiting toxicity (DLT) events. In making a dose transition decision, a key scientific question is whether the true DLT rate of the current dose exceeds the target DLT rate, and the statistical question is how to evaluate the statistical evidence in the available DLT data with respect to that scientific question. This article introduces generalized likelihood ratios (GLRs) that can be used to measure statistical evidence and support dose transition decisions. Applying this approach to a single-dose likelihood leads to a GLR-based interval design with three parameters: the target DLT rate and two GLR cut-points representing the levels of evidence required for dose escalation and de-escalation. This design gives a likelihood interpretation to each existing interval design and provides a unified framework for comparing different interval designs in terms of how much evidence is required for escalation and de-escalation. A GLR-based comparison of commonly used interval designs reveals important differences and motivates alternative designs that reduce over-treatment while maintaining MTD estimation accuracy. The GLR-based approach can also be applied to a joint likelihood based on a nonparametric (e.g., isotonic regression) model or a parametric model. Simulation results indicate that the isotonic GLR performs similarly to the single-dose GLR but the GLR based on a parsimonious model can improve MTD estimation when the underlying model is correct.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2445\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2445","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤学中的剂量发现研究通常包括一个上下剂量转换规则,该规则根据累积的剂量限制性毒性(DLT)事件数据为每组患者分配剂量。在作出剂量转移决策时,一个关键的科学问题是当前剂量的真实DLT率是否超过目标DLT率,而统计问题是如何评估现有DLT数据中与该科学问题相关的统计证据。本文介绍了可用于测量统计证据和支持剂量转移决策的广义似然比(GLRs)。将此方法应用于单剂量似然,可得到基于GLR的间隔设计,其中有三个参数:目标DLT率和两个GLR截断点,代表剂量递增和递减所需的证据水平。该设计为每个现有的层段设计提供了可能性解释,并提供了一个统一的框架,用于比较不同的层段设计,以确定升级和降级需要多少证据。基于glr的常用层段设计的比较揭示了重要的差异,并激发了减少过度处理同时保持MTD估计精度的替代设计。基于glr的方法也可以应用于基于非参数(例如,等渗回归)模型或参数模型的联合似然。仿真结果表明,等渗GLR的性能与单剂量GLR相似,但在基础模型正确的情况下,基于简约模型的GLR可以提高MTD的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Likelihood Perspective on Dose-Finding Study Designs in Oncology.

Dose-finding studies in oncology often include an up-and-down dose transition rule that assigns a dose to each cohort of patients based on accumulating data on dose-limiting toxicity (DLT) events. In making a dose transition decision, a key scientific question is whether the true DLT rate of the current dose exceeds the target DLT rate, and the statistical question is how to evaluate the statistical evidence in the available DLT data with respect to that scientific question. This article introduces generalized likelihood ratios (GLRs) that can be used to measure statistical evidence and support dose transition decisions. Applying this approach to a single-dose likelihood leads to a GLR-based interval design with three parameters: the target DLT rate and two GLR cut-points representing the levels of evidence required for dose escalation and de-escalation. This design gives a likelihood interpretation to each existing interval design and provides a unified framework for comparing different interval designs in terms of how much evidence is required for escalation and de-escalation. A GLR-based comparison of commonly used interval designs reveals important differences and motivates alternative designs that reduce over-treatment while maintaining MTD estimation accuracy. The GLR-based approach can also be applied to a joint likelihood based on a nonparametric (e.g., isotonic regression) model or a parametric model. Simulation results indicate that the isotonic GLR performs similarly to the single-dose GLR but the GLR based on a parsimonious model can improve MTD estimation when the underlying model is correct.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
A Commensurate Prior Model With Random Effects for Survival and Competing Risk Outcomes to Accommodate Historical Controls. Bayesian Sample Size Calculation in Small n, Sequential Multiple Assignment Randomized Trials (snSMART). Taylor Series Approximation for Accurate Generalized Confidence Intervals of Ratios of Log-Normal Standard Deviations for Meta-Analysis Using Means and Standard Deviations in Time Scale. A Bayesian Hybrid Design With Borrowing From Historical Study. WATCH: A Workflow to Assess Treatment Effect Heterogeneity in Drug Development for Clinical Trial Sponsors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1