{"title":"三种不同时间分数阶导数下[公式略]和[公式略]维[公式略]分量耦合非线性偏微分方程的广义可分离解","authors":"P. Prakash , K.S. Priyendhu , M. Lakshmanan","doi":"10.1016/j.chaos.2024.115852","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we explain the invariant subspace approach for <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional <span><math><mi>m</mi></math></span>-component nonlinear coupled systems of PDEs with and without time delays under three different time-fractional derivatives. Also, we explain how this method can be used to derive different types of generalized separable solutions for the nonlinear systems mentioned above through the obtained invariant subspaces. More precisely, we show the applicability of this method using the general class of coupled 2-component nonlinear <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional reaction-diffusion system under three time-fractional derivatives. Moreover, we provide a detailed description for obtaining the various types of different dimensional invariant linear 2-component subspaces and their solutions for the underlying coupled 2-component nonlinear <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional reaction-diffusion system with appropriate initial-boundary conditions under the three time-fractional derivatives known as (a) Riemann–Liouville (RL) fractional derivative, (b) Caputo fractional derivative, and (c) Hilfer fractional derivative, as examples. Furthermore, we observe that the derived separable solutions under three fractional-order derivatives consist of trigonometric, polynomial, exponential, and Mittag–Leffler functions. Additionally, we present a comparative study of the obtained solutions and results of the discussed nonlinear systems under the three considered fractional derivatives through the corresponding two and three-dimensional plots for various values of fractional orders as well as with the existing literature.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"191 ","pages":"Article 115852"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized separable solutions for (2+1) and (3+1)-dimensional m-component coupled nonlinear systems of PDEs under three different time-fractional derivatives\",\"authors\":\"P. Prakash , K.S. Priyendhu , M. Lakshmanan\",\"doi\":\"10.1016/j.chaos.2024.115852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we explain the invariant subspace approach for <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mn>3</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional <span><math><mi>m</mi></math></span>-component nonlinear coupled systems of PDEs with and without time delays under three different time-fractional derivatives. Also, we explain how this method can be used to derive different types of generalized separable solutions for the nonlinear systems mentioned above through the obtained invariant subspaces. More precisely, we show the applicability of this method using the general class of coupled 2-component nonlinear <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional reaction-diffusion system under three time-fractional derivatives. Moreover, we provide a detailed description for obtaining the various types of different dimensional invariant linear 2-component subspaces and their solutions for the underlying coupled 2-component nonlinear <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional reaction-diffusion system with appropriate initial-boundary conditions under the three time-fractional derivatives known as (a) Riemann–Liouville (RL) fractional derivative, (b) Caputo fractional derivative, and (c) Hilfer fractional derivative, as examples. Furthermore, we observe that the derived separable solutions under three fractional-order derivatives consist of trigonometric, polynomial, exponential, and Mittag–Leffler functions. Additionally, we present a comparative study of the obtained solutions and results of the discussed nonlinear systems under the three considered fractional derivatives through the corresponding two and three-dimensional plots for various values of fractional orders as well as with the existing literature.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"191 \",\"pages\":\"Article 115852\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924014048\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924014048","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Generalized separable solutions for (2+1) and (3+1)-dimensional m-component coupled nonlinear systems of PDEs under three different time-fractional derivatives
In this article, we explain the invariant subspace approach for and -dimensional -component nonlinear coupled systems of PDEs with and without time delays under three different time-fractional derivatives. Also, we explain how this method can be used to derive different types of generalized separable solutions for the nonlinear systems mentioned above through the obtained invariant subspaces. More precisely, we show the applicability of this method using the general class of coupled 2-component nonlinear -dimensional reaction-diffusion system under three time-fractional derivatives. Moreover, we provide a detailed description for obtaining the various types of different dimensional invariant linear 2-component subspaces and their solutions for the underlying coupled 2-component nonlinear -dimensional reaction-diffusion system with appropriate initial-boundary conditions under the three time-fractional derivatives known as (a) Riemann–Liouville (RL) fractional derivative, (b) Caputo fractional derivative, and (c) Hilfer fractional derivative, as examples. Furthermore, we observe that the derived separable solutions under three fractional-order derivatives consist of trigonometric, polynomial, exponential, and Mittag–Leffler functions. Additionally, we present a comparative study of the obtained solutions and results of the discussed nonlinear systems under the three considered fractional derivatives through the corresponding two and three-dimensional plots for various values of fractional orders as well as with the existing literature.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.