一种具有独特作用机制的泛ras抑制剂在胃肠道肿瘤中抑制肿瘤生长并诱导抗肿瘤免疫

IF 12.5 1区 医学 Q1 ONCOLOGY Cancer research Pub Date : 2024-12-19 DOI:10.1158/0008-5472.can-24-0323
Jeremy B. Foote, Tyler E. Mattox, Adam B. Keeton, Xi Chen, Forrest T. Smith, Kristy Berry, Thomas W. Holmes, Junwei Wang, Chung-hui Huang, Antonio Ward, AMIT K. Mitra, Veronica Ramirez-Alcantara, Cherlene Hardy, Karianne G. Fleten, Kjersti Flatmark, Karina J. Yoon, Sujith Sarvesh, Ganji P. Nagaraju, Dhana Sekhar Reddy Bandi, Yulia Y. Maxuitenko, Jacaob Valiyaveettil, Julienne L. Carstens, Donald J. Buchsbaum, Jennifer Yang, Gang Zhou, Elmar Nurmemmedov, Ivan Babic, Vadim Gaponeko, Hazem Abdelkarim, Michael R. Boyd, Greg Gorman, Upender Manne, Sejong Bae, Bassel F. El-Rayes, Gary A. Piazza
{"title":"一种具有独特作用机制的泛ras抑制剂在胃肠道肿瘤中抑制肿瘤生长并诱导抗肿瘤免疫","authors":"Jeremy B. Foote, Tyler E. Mattox, Adam B. Keeton, Xi Chen, Forrest T. Smith, Kristy Berry, Thomas W. Holmes, Junwei Wang, Chung-hui Huang, Antonio Ward, AMIT K. Mitra, Veronica Ramirez-Alcantara, Cherlene Hardy, Karianne G. Fleten, Kjersti Flatmark, Karina J. Yoon, Sujith Sarvesh, Ganji P. Nagaraju, Dhana Sekhar Reddy Bandi, Yulia Y. Maxuitenko, Jacaob Valiyaveettil, Julienne L. Carstens, Donald J. Buchsbaum, Jennifer Yang, Gang Zhou, Elmar Nurmemmedov, Ivan Babic, Vadim Gaponeko, Hazem Abdelkarim, Michael R. Boyd, Greg Gorman, Upender Manne, Sejong Bae, Bassel F. El-Rayes, Gary A. Piazza","doi":"10.1158/0008-5472.can-24-0323","DOIUrl":null,"url":null,"abstract":"RAS is a common driver of cancer that was considered undruggable for decades. Recent advances have enabled the development of RAS inhibitors, but the efficacy of these inhibitors remains limited by resistance. Here, we developed a pan-RAS inhibitor, ADT-007, that binds nucleotide-free RAS to block GTP activation of effector interactions and MAPK/AKT signaling, resulting in mitotic arrest and apoptosis. ADT-007 potently inhibited the growth of RAS mutant cancer cells irrespective of the RAS mutation or isozyme, and RASWT cancer cells with GTP-activated RAS from upstream mutations were equally sensitive. Conversely, RASWT cancer cells harboring downstream BRAF mutations and normal cells were essentially insensitive to ADT-007. Sensitivity of cancer cells to ADT-007 required activated RAS and dependence on RAS for proliferation, while insensitivity was attributed to metabolic deactivation by UDP-glucuronosyltransferases that were expressed in RASWT and normal cells but repressed in RAS mutant cancer cells. ADT-007 displayed unique advantages over KRAS mutant-specific, pan-KRAS, and pan-RAS inhibitors that could impact in vivo antitumor efficacy by escaping compensatory mechanisms that lead to resistance. Local administration of ADT-007 showed robust antitumor activity in syngeneic immune-competent and xenogeneic immune-deficient mouse models of colorectal and pancreatic cancer. The antitumor activity of ADT-007 was associated with the suppression of MAPK signaling and activation of innate and adaptive immunity in the tumor immune microenvironment. Oral administration of ADT-007 prodrug also inhibited tumor growth. Thus, ADT-007 has the potential to address the complex RAS mutational landscape of many human cancers and to improve treatment of RAS-driven tumors.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"29 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pan-RAS Inhibitor with a Unique Mechanism of Action Blocks Tumor Growth and Induces Antitumor Immunity in Gastrointestinal Cancer\",\"authors\":\"Jeremy B. Foote, Tyler E. Mattox, Adam B. Keeton, Xi Chen, Forrest T. Smith, Kristy Berry, Thomas W. Holmes, Junwei Wang, Chung-hui Huang, Antonio Ward, AMIT K. Mitra, Veronica Ramirez-Alcantara, Cherlene Hardy, Karianne G. Fleten, Kjersti Flatmark, Karina J. Yoon, Sujith Sarvesh, Ganji P. Nagaraju, Dhana Sekhar Reddy Bandi, Yulia Y. Maxuitenko, Jacaob Valiyaveettil, Julienne L. Carstens, Donald J. Buchsbaum, Jennifer Yang, Gang Zhou, Elmar Nurmemmedov, Ivan Babic, Vadim Gaponeko, Hazem Abdelkarim, Michael R. Boyd, Greg Gorman, Upender Manne, Sejong Bae, Bassel F. El-Rayes, Gary A. Piazza\",\"doi\":\"10.1158/0008-5472.can-24-0323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RAS is a common driver of cancer that was considered undruggable for decades. Recent advances have enabled the development of RAS inhibitors, but the efficacy of these inhibitors remains limited by resistance. Here, we developed a pan-RAS inhibitor, ADT-007, that binds nucleotide-free RAS to block GTP activation of effector interactions and MAPK/AKT signaling, resulting in mitotic arrest and apoptosis. ADT-007 potently inhibited the growth of RAS mutant cancer cells irrespective of the RAS mutation or isozyme, and RASWT cancer cells with GTP-activated RAS from upstream mutations were equally sensitive. Conversely, RASWT cancer cells harboring downstream BRAF mutations and normal cells were essentially insensitive to ADT-007. Sensitivity of cancer cells to ADT-007 required activated RAS and dependence on RAS for proliferation, while insensitivity was attributed to metabolic deactivation by UDP-glucuronosyltransferases that were expressed in RASWT and normal cells but repressed in RAS mutant cancer cells. ADT-007 displayed unique advantages over KRAS mutant-specific, pan-KRAS, and pan-RAS inhibitors that could impact in vivo antitumor efficacy by escaping compensatory mechanisms that lead to resistance. Local administration of ADT-007 showed robust antitumor activity in syngeneic immune-competent and xenogeneic immune-deficient mouse models of colorectal and pancreatic cancer. The antitumor activity of ADT-007 was associated with the suppression of MAPK signaling and activation of innate and adaptive immunity in the tumor immune microenvironment. Oral administration of ADT-007 prodrug also inhibited tumor growth. Thus, ADT-007 has the potential to address the complex RAS mutational landscape of many human cancers and to improve treatment of RAS-driven tumors.\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.can-24-0323\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-0323","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

RAS是癌症的常见驱动因素,几十年来一直被认为是不可治愈的。最近的进展使RAS抑制剂的发展成为可能,但这些抑制剂的疗效仍然受到耐药性的限制。在这里,我们开发了一种泛RAS抑制剂ADT-007,它结合无核苷酸的RAS来阻断GTP激活的效应物相互作用和MAPK/AKT信号传导,导致有丝分裂停滞和凋亡。ADT-007无论RAS突变或同工酶如何,都能有效抑制RAS突变癌细胞的生长,而具有上游突变的gtp激活RAS的RASWT癌细胞同样敏感。相反,携带BRAF下游突变的RASWT癌细胞和正常细胞基本上对ADT-007不敏感。癌细胞对ADT-007的敏感性需要激活RAS并依赖RAS进行增殖,而不敏感性归因于udp -葡萄糖醛基转移酶的代谢失活,这种酶在RASWT和正常细胞中表达,但在RAS突变的癌细胞中被抑制。与KRAS突变特异性、pan-KRAS和pan-RAS抑制剂相比,ADT-007显示出独特的优势,这些抑制剂可以通过逃避导致耐药性的代偿机制来影响体内抗肿瘤疗效。局部给药ADT-007在结直肠癌和胰腺癌小鼠模型中显示出强大的抗肿瘤活性。ADT-007的抗肿瘤活性与抑制MAPK信号和激活肿瘤免疫微环境中的先天免疫和适应性免疫有关。口服ADT-007前药对肿瘤生长也有抑制作用。因此,ADT-007有潜力解决许多人类癌症复杂的RAS突变景观,并改善RAS驱动肿瘤的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Pan-RAS Inhibitor with a Unique Mechanism of Action Blocks Tumor Growth and Induces Antitumor Immunity in Gastrointestinal Cancer
RAS is a common driver of cancer that was considered undruggable for decades. Recent advances have enabled the development of RAS inhibitors, but the efficacy of these inhibitors remains limited by resistance. Here, we developed a pan-RAS inhibitor, ADT-007, that binds nucleotide-free RAS to block GTP activation of effector interactions and MAPK/AKT signaling, resulting in mitotic arrest and apoptosis. ADT-007 potently inhibited the growth of RAS mutant cancer cells irrespective of the RAS mutation or isozyme, and RASWT cancer cells with GTP-activated RAS from upstream mutations were equally sensitive. Conversely, RASWT cancer cells harboring downstream BRAF mutations and normal cells were essentially insensitive to ADT-007. Sensitivity of cancer cells to ADT-007 required activated RAS and dependence on RAS for proliferation, while insensitivity was attributed to metabolic deactivation by UDP-glucuronosyltransferases that were expressed in RASWT and normal cells but repressed in RAS mutant cancer cells. ADT-007 displayed unique advantages over KRAS mutant-specific, pan-KRAS, and pan-RAS inhibitors that could impact in vivo antitumor efficacy by escaping compensatory mechanisms that lead to resistance. Local administration of ADT-007 showed robust antitumor activity in syngeneic immune-competent and xenogeneic immune-deficient mouse models of colorectal and pancreatic cancer. The antitumor activity of ADT-007 was associated with the suppression of MAPK signaling and activation of innate and adaptive immunity in the tumor immune microenvironment. Oral administration of ADT-007 prodrug also inhibited tumor growth. Thus, ADT-007 has the potential to address the complex RAS mutational landscape of many human cancers and to improve treatment of RAS-driven tumors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
期刊最新文献
Gli2 Facilitates Tumor Immune Evasion and Immunotherapeutic Resistance by Coordinating Wnt Ligand and Prostaglandin Signaling Targeting PRC2 Enhances the Cytotoxic Capacity of Anti-CD19 CAR-T Cells Against Hematological Malignancies Breast Cancer Subtype-Specific Organotropism Is Dictated by FOXF2-Regulated Metastatic Dormancy and Recovery. A Potent, Selective, Small-Molecule Inhibitor of DHX9 Abrogates Proliferation of Microsatellite Instable Cancers with Deficient Mismatch Repair. Chromatin Helicase CHD6 Establishes Proinflammatory Enhancers and Is a Synthetic Lethal Target in FH-Deficient Renal Cell Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1