从头算非晶体结构数据库:增强机器学习解码扩散性的能力

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-12-19 DOI:10.1038/s41524-024-01469-2
Hui Zheng, Eric Sivonxay, Rasmus Christensen, Max Gallant, Ziyao Luo, Matthew McDermott, Patrick Huck, Morten M. Smedskjær, Kristin A. Persson
{"title":"从头算非晶体结构数据库:增强机器学习解码扩散性的能力","authors":"Hui Zheng, Eric Sivonxay, Rasmus Christensen, Max Gallant, Ziyao Luo, Matthew McDermott, Patrick Huck, Morten M. Smedskjær, Kristin A. Persson","doi":"10.1038/s41524-024-01469-2","DOIUrl":null,"url":null,"abstract":"<p>Non-crystalline materials exhibit unique properties that make them suitable for various applications in science and technology, ranging from optical and electronic devices and solid-state batteries to protective coatings. However, data-driven exploration and design of non-crystalline materials is hampered by the absence of a comprehensive database covering a broad chemical space. In this work, we present the largest computed non-crystalline structure database to date, generated from systematic and accurate ab initio molecular dynamics (AIMD) calculations. We also show how the database can be used in simple machine-learning models to connect properties to composition and structure, here specifically targeting ionic conductivity. These models predict the Li-ion diffusivity with speed and accuracy, offering a cost-effective alternative to expensive density functional theory (DFT) calculations. Furthermore, the process of computational quenching non-crystalline structures provides a unique sampling of out-of-equilibrium structures, energies, and force landscape, and we anticipate that the corresponding trajectories will inform future work in universal machine learning potentials, impacting design beyond that of non-crystalline materials. In addition, combining diffusion trajectories from our dataset with models that predict liquidus viscosity and melting temperature could be utilized to develop models for predicting glass-forming ability.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"70 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity\",\"authors\":\"Hui Zheng, Eric Sivonxay, Rasmus Christensen, Max Gallant, Ziyao Luo, Matthew McDermott, Patrick Huck, Morten M. Smedskjær, Kristin A. Persson\",\"doi\":\"10.1038/s41524-024-01469-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-crystalline materials exhibit unique properties that make them suitable for various applications in science and technology, ranging from optical and electronic devices and solid-state batteries to protective coatings. However, data-driven exploration and design of non-crystalline materials is hampered by the absence of a comprehensive database covering a broad chemical space. In this work, we present the largest computed non-crystalline structure database to date, generated from systematic and accurate ab initio molecular dynamics (AIMD) calculations. We also show how the database can be used in simple machine-learning models to connect properties to composition and structure, here specifically targeting ionic conductivity. These models predict the Li-ion diffusivity with speed and accuracy, offering a cost-effective alternative to expensive density functional theory (DFT) calculations. Furthermore, the process of computational quenching non-crystalline structures provides a unique sampling of out-of-equilibrium structures, energies, and force landscape, and we anticipate that the corresponding trajectories will inform future work in universal machine learning potentials, impacting design beyond that of non-crystalline materials. In addition, combining diffusion trajectories from our dataset with models that predict liquidus viscosity and melting temperature could be utilized to develop models for predicting glass-forming ability.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01469-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01469-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

非晶体材料表现出独特的性能,使其适用于各种科学和技术应用,从光学和电子设备、固态电池到保护涂层。然而,数据驱动的非晶体材料的探索和设计受到缺乏覆盖广泛化学空间的综合数据库的阻碍。在这项工作中,我们提出了迄今为止最大的计算非晶体结构数据库,由系统和精确的从头算分子动力学(AIMD)计算生成。我们还展示了如何将数据库用于简单的机器学习模型,将属性与成分和结构联系起来,这里特别针对离子电导率。这些模型快速准确地预测了锂离子的扩散率,为昂贵的密度泛函理论(DFT)计算提供了一种经济有效的替代方案。此外,计算猝灭非晶体结构的过程提供了非平衡结构、能量和力景观的独特采样,我们预计相应的轨迹将为通用机器学习潜力的未来工作提供信息,影响非晶体材料的设计。此外,将我们数据集中的扩散轨迹与预测液体粘度和熔化温度的模型相结合,可以用来开发预测玻璃形成能力的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity

Non-crystalline materials exhibit unique properties that make them suitable for various applications in science and technology, ranging from optical and electronic devices and solid-state batteries to protective coatings. However, data-driven exploration and design of non-crystalline materials is hampered by the absence of a comprehensive database covering a broad chemical space. In this work, we present the largest computed non-crystalline structure database to date, generated from systematic and accurate ab initio molecular dynamics (AIMD) calculations. We also show how the database can be used in simple machine-learning models to connect properties to composition and structure, here specifically targeting ionic conductivity. These models predict the Li-ion diffusivity with speed and accuracy, offering a cost-effective alternative to expensive density functional theory (DFT) calculations. Furthermore, the process of computational quenching non-crystalline structures provides a unique sampling of out-of-equilibrium structures, energies, and force landscape, and we anticipate that the corresponding trajectories will inform future work in universal machine learning potentials, impacting design beyond that of non-crystalline materials. In addition, combining diffusion trajectories from our dataset with models that predict liquidus viscosity and melting temperature could be utilized to develop models for predicting glass-forming ability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
SPACIER: on-demand polymer design with fully automated all-atom classical molecular dynamics integrated into machine learning pipelines Exploring parameter dependence of atomic minima with implicit differentiation Active oversight and quality control in standard Bayesian optimization for autonomous experiments Feature engineering descriptors, transforms, and machine learning for grain boundaries and variable-sized atom clusters Machine learning Hubbard parameters with equivariant neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1