{"title":"用 GC-MS-Olfactometry 法解码不同参数下新鲜大蒜和黑蒜挥发物及主要气味物质的变化","authors":"Hatice Kubra Sasmaz, Gamze Guclu, Onur Sevindik, Serkan Selli* and Hasim Kelebek*, ","doi":"10.1021/acsfoodscitech.4c0054010.1021/acsfoodscitech.4c00540","DOIUrl":null,"url":null,"abstract":"<p >The effects of production parameters on aroma compounds were elucidated by conducting a detailed comparison between fresh and black garlic samples, providing new insights that contribute to the existing body of literature on aroma compound analysis in garlic. A total of 113 aroma compounds were identified including sulfur compounds, aldehydes, ketones, pyrazines, furans, thiophenes, volatile alcohols, and acids. The aroma profile of the black garlic samples varied depending on factors such as temperature, humidity, and fermentation duration. The black garlic sample with the highest aroma quantity was the one produced at the lowest temperature, humidity, and duration. Additionally, a total of 34 aroma-active compounds that create the characteristic odor of fresh and black garlic samples were determined by GC-MS-O and aroma extract dilution analysis (AEDA). The fresh garlic sample contained allyl methyl disulfide and diallyl disulfide, which are responsible for the characteristic garlic odor, while in the black garlic samples, furfuryl alcohol was found to be the most dominant aroma-active compound. The findings of this study will help better elucidate the impacts of production process parameters on the aroma and aroma-active profiles of black garlic.</p>","PeriodicalId":72048,"journal":{"name":"ACS food science & technology","volume":"4 12","pages":"2946–2957 2946–2957"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the Changes of Volatiles and Key Odorants of Fresh Garlic and Black Garlic Produced with Different Parameters by GC-MS-Olfactometry\",\"authors\":\"Hatice Kubra Sasmaz, Gamze Guclu, Onur Sevindik, Serkan Selli* and Hasim Kelebek*, \",\"doi\":\"10.1021/acsfoodscitech.4c0054010.1021/acsfoodscitech.4c00540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The effects of production parameters on aroma compounds were elucidated by conducting a detailed comparison between fresh and black garlic samples, providing new insights that contribute to the existing body of literature on aroma compound analysis in garlic. A total of 113 aroma compounds were identified including sulfur compounds, aldehydes, ketones, pyrazines, furans, thiophenes, volatile alcohols, and acids. The aroma profile of the black garlic samples varied depending on factors such as temperature, humidity, and fermentation duration. The black garlic sample with the highest aroma quantity was the one produced at the lowest temperature, humidity, and duration. Additionally, a total of 34 aroma-active compounds that create the characteristic odor of fresh and black garlic samples were determined by GC-MS-O and aroma extract dilution analysis (AEDA). The fresh garlic sample contained allyl methyl disulfide and diallyl disulfide, which are responsible for the characteristic garlic odor, while in the black garlic samples, furfuryl alcohol was found to be the most dominant aroma-active compound. The findings of this study will help better elucidate the impacts of production process parameters on the aroma and aroma-active profiles of black garlic.</p>\",\"PeriodicalId\":72048,\"journal\":{\"name\":\"ACS food science & technology\",\"volume\":\"4 12\",\"pages\":\"2946–2957 2946–2957\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS food science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsfoodscitech.4c00540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS food science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsfoodscitech.4c00540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Decoding the Changes of Volatiles and Key Odorants of Fresh Garlic and Black Garlic Produced with Different Parameters by GC-MS-Olfactometry
The effects of production parameters on aroma compounds were elucidated by conducting a detailed comparison between fresh and black garlic samples, providing new insights that contribute to the existing body of literature on aroma compound analysis in garlic. A total of 113 aroma compounds were identified including sulfur compounds, aldehydes, ketones, pyrazines, furans, thiophenes, volatile alcohols, and acids. The aroma profile of the black garlic samples varied depending on factors such as temperature, humidity, and fermentation duration. The black garlic sample with the highest aroma quantity was the one produced at the lowest temperature, humidity, and duration. Additionally, a total of 34 aroma-active compounds that create the characteristic odor of fresh and black garlic samples were determined by GC-MS-O and aroma extract dilution analysis (AEDA). The fresh garlic sample contained allyl methyl disulfide and diallyl disulfide, which are responsible for the characteristic garlic odor, while in the black garlic samples, furfuryl alcohol was found to be the most dominant aroma-active compound. The findings of this study will help better elucidate the impacts of production process parameters on the aroma and aroma-active profiles of black garlic.