{"title":"增强非易失性片上存储器的ffet结构:设计与比较分析","authors":"Mandeep Singh, Tarun Chaudhary, Balwinder Raj","doi":"10.1002/jnm.70004","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>FeFET architectures for non-volatile on-chip memory are designed and compared in this investigation study. Because of its inherent non-volatile properties and low power requirements, FeFETs are attracting a lot of interest as prospective candidates for future memory technology. The aim of this paper is to investigate several FeFET designs and assess how well they function in terms of important factors including durability, retention, speed, and endurance. Using device simulations and experimental data, a number of FeFET architectures, such as MFS, MFIS, MFMIS, and MF-ABO<sub>3</sub>, are analyzed and contrasted. Comparative study gives light on the advantages and disadvantages of various FeFET architectures; improving our comprehension of how well-suited they are for non-volatile on-chip memory. This work will contribute to the improvement of FeFET devices for upcoming integrated circuits and progress the development of sophisticated FeFET-based memory techniques.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"37 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing FeFET Structures for Non-Volatile On-Chip Memories: Design and Comparative Analysis\",\"authors\":\"Mandeep Singh, Tarun Chaudhary, Balwinder Raj\",\"doi\":\"10.1002/jnm.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>FeFET architectures for non-volatile on-chip memory are designed and compared in this investigation study. Because of its inherent non-volatile properties and low power requirements, FeFETs are attracting a lot of interest as prospective candidates for future memory technology. The aim of this paper is to investigate several FeFET designs and assess how well they function in terms of important factors including durability, retention, speed, and endurance. Using device simulations and experimental data, a number of FeFET architectures, such as MFS, MFIS, MFMIS, and MF-ABO<sub>3</sub>, are analyzed and contrasted. Comparative study gives light on the advantages and disadvantages of various FeFET architectures; improving our comprehension of how well-suited they are for non-volatile on-chip memory. This work will contribute to the improvement of FeFET devices for upcoming integrated circuits and progress the development of sophisticated FeFET-based memory techniques.</p>\\n </div>\",\"PeriodicalId\":50300,\"journal\":{\"name\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"volume\":\"37 6\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70004\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhancing FeFET Structures for Non-Volatile On-Chip Memories: Design and Comparative Analysis
FeFET architectures for non-volatile on-chip memory are designed and compared in this investigation study. Because of its inherent non-volatile properties and low power requirements, FeFETs are attracting a lot of interest as prospective candidates for future memory technology. The aim of this paper is to investigate several FeFET designs and assess how well they function in terms of important factors including durability, retention, speed, and endurance. Using device simulations and experimental data, a number of FeFET architectures, such as MFS, MFIS, MFMIS, and MF-ABO3, are analyzed and contrasted. Comparative study gives light on the advantages and disadvantages of various FeFET architectures; improving our comprehension of how well-suited they are for non-volatile on-chip memory. This work will contribute to the improvement of FeFET devices for upcoming integrated circuits and progress the development of sophisticated FeFET-based memory techniques.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.