基于大数据和TCN-BiLSTM-QR的铁路货运区间预测方法研究

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2024-09-01 DOI:10.1049/itr2.12531
Chenyang Feng, Yang Lei
{"title":"基于大数据和TCN-BiLSTM-QR的铁路货运区间预测方法研究","authors":"Chenyang Feng,&nbsp;Yang Lei","doi":"10.1049/itr2.12531","DOIUrl":null,"url":null,"abstract":"<p>With the rapid development of logistics, the categories of goods and the frequencies of train transportation in railway freight have increased significantly. The volatility and uncertainty of railway freight transportation have become even greater. Accurately predicting railway freight volume in the medium to long term has become increasingly challenging. On the basis of traditional prediction models, this paper introduces the concepts of interval and probability prediction, and proposes a temporal convolutional network (TCN)-bi-directional long short-term memory (BiLSTM) interval prediction method for medium and long-term railway freight volume. The method uses grey relational analysis for data dimensionality reduction and feature extraction, and TCN, BiLSTM, and quantile regression for modelling. Through a case study of freight transportation on the Shuohuang Railway, the results show that the TCN-BiLSTM model achieves higher accuracy in point prediction and better performance in interval prediction compared to other general prediction models. The interval prediction can provide references for freight volume fluctuations in periods with significant volatility, which can assist railway transportation companies in better scheduling and planning based on such information.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2713-2724"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12531","citationCount":"0","resultStr":"{\"title\":\"Research on interval prediction method of railway freight based on big data and TCN-BiLSTM-QR\",\"authors\":\"Chenyang Feng,&nbsp;Yang Lei\",\"doi\":\"10.1049/itr2.12531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rapid development of logistics, the categories of goods and the frequencies of train transportation in railway freight have increased significantly. The volatility and uncertainty of railway freight transportation have become even greater. Accurately predicting railway freight volume in the medium to long term has become increasingly challenging. On the basis of traditional prediction models, this paper introduces the concepts of interval and probability prediction, and proposes a temporal convolutional network (TCN)-bi-directional long short-term memory (BiLSTM) interval prediction method for medium and long-term railway freight volume. The method uses grey relational analysis for data dimensionality reduction and feature extraction, and TCN, BiLSTM, and quantile regression for modelling. Through a case study of freight transportation on the Shuohuang Railway, the results show that the TCN-BiLSTM model achieves higher accuracy in point prediction and better performance in interval prediction compared to other general prediction models. The interval prediction can provide references for freight volume fluctuations in periods with significant volatility, which can assist railway transportation companies in better scheduling and planning based on such information.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 12\",\"pages\":\"2713-2724\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12531\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12531\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12531","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着物流业的快速发展,铁路货运的货物种类和列车运输频次显著增加。铁路货运的波动性和不确定性更大。准确预测铁路中长期货运量已成为一个越来越具有挑战性的课题。在传统预测模型的基础上,引入区间预测和概率预测的概念,提出了一种基于时间卷积网络(TCN)-双向长短期记忆(BiLSTM)的中长期铁路货运量区间预测方法。该方法采用灰色关联分析进行数据降维和特征提取,采用TCN、BiLSTM和分位数回归进行建模。通过对朔黄铁路货物运输的实例研究,结果表明,与其他一般预测模型相比,TCN-BiLSTM模型在点预测方面具有更高的精度,在区间预测方面具有更好的性能。区间预测可以为波动较大时期的货运量波动提供参考,帮助铁路运输公司更好地根据这些信息进行调度和规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on interval prediction method of railway freight based on big data and TCN-BiLSTM-QR

With the rapid development of logistics, the categories of goods and the frequencies of train transportation in railway freight have increased significantly. The volatility and uncertainty of railway freight transportation have become even greater. Accurately predicting railway freight volume in the medium to long term has become increasingly challenging. On the basis of traditional prediction models, this paper introduces the concepts of interval and probability prediction, and proposes a temporal convolutional network (TCN)-bi-directional long short-term memory (BiLSTM) interval prediction method for medium and long-term railway freight volume. The method uses grey relational analysis for data dimensionality reduction and feature extraction, and TCN, BiLSTM, and quantile regression for modelling. Through a case study of freight transportation on the Shuohuang Railway, the results show that the TCN-BiLSTM model achieves higher accuracy in point prediction and better performance in interval prediction compared to other general prediction models. The interval prediction can provide references for freight volume fluctuations in periods with significant volatility, which can assist railway transportation companies in better scheduling and planning based on such information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Evaluation of automated driving safety in urban mixed traffic environments Development of an enhanced base unit generation framework for predicting demand in free-floating micro-mobility Review of driver behaviour modelling for highway on-ramp merging Driving range estimation for electric bus based on atomic orbital search and back propagation neural network Intersection decision making for autonomous vehicles based on improved PPO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1