求助PDF
{"title":"粉煤灰固相合成硅石-1分子筛及其CO2吸附性能研究","authors":"Xianglian Wu, Aisha Nulahong, Conghui Miao, Qinghua Liu, Jiangyuan Li, Changmin Tuo","doi":"10.1002/ghg.2306","DOIUrl":null,"url":null,"abstract":"<p>In this work, an alkali melting-pickling assisted solid phase synthesis method of S-1 zeolite molecular sieve with excellent adsorption properties for CO<sub>2</sub> was successfully developed by using solid waste fly ash. SiO<sub>2</sub> with a purity of up to 97.84% was successfully extracted by using alkaline fusion activation, high temperature calcination and pickling. The CO<sub>2</sub> adsorption capacity of the prepared SiO<sub>2</sub> was 0.51 mmol/g at 298 K and 1 bar. Silicalite-1 molecular sieve was prepared by solid phase synthesis method using SiO<sub>2</sub> extracted from fly ash as silicon source. The results showed that the prepared Silicalite-1 had good morphology and relatively high crystallinity. The specific surface area is 623.30 m<sup>2</sup>/g, and the total pore volume is 0.31 cm<sup>3</sup>/g. In addition, the adsorption capacity of CO<sub>2</sub> was 2.05 mmol/g at 298 K and 1 bar. Compared with the prepared SiO<sub>2</sub>, the adsorption capacity of CO<sub>2</sub> by Silicalite-1 molecular sieve increased by four times. Moreover, under the test condition of 298 K, it has a high selectivity coefficient for CO<sub>2</sub>/N<sub>2</sub> mixed gas, and after 10 times of adsorption-desorption cycle tests, the adsorption capacity of Silicalite-1 molecular sieve for CO<sub>2</sub> does not change significantly, and its adsorption rate can still be as high as 89.31%. The results indicate that Silicalite-1 molecular sieve prepared by solid phase synthesis method has good adsorption selectivity and adsorption–desorption cycle regeneration stability, and can be used in the field of CO<sub>2</sub> adsorption, separation and purification. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 6","pages":"954-976"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid-phase synthesis of silicalite-1 molecular sieve based on fly ash and its CO2 adsorption performance\",\"authors\":\"Xianglian Wu, Aisha Nulahong, Conghui Miao, Qinghua Liu, Jiangyuan Li, Changmin Tuo\",\"doi\":\"10.1002/ghg.2306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, an alkali melting-pickling assisted solid phase synthesis method of S-1 zeolite molecular sieve with excellent adsorption properties for CO<sub>2</sub> was successfully developed by using solid waste fly ash. SiO<sub>2</sub> with a purity of up to 97.84% was successfully extracted by using alkaline fusion activation, high temperature calcination and pickling. The CO<sub>2</sub> adsorption capacity of the prepared SiO<sub>2</sub> was 0.51 mmol/g at 298 K and 1 bar. Silicalite-1 molecular sieve was prepared by solid phase synthesis method using SiO<sub>2</sub> extracted from fly ash as silicon source. The results showed that the prepared Silicalite-1 had good morphology and relatively high crystallinity. The specific surface area is 623.30 m<sup>2</sup>/g, and the total pore volume is 0.31 cm<sup>3</sup>/g. In addition, the adsorption capacity of CO<sub>2</sub> was 2.05 mmol/g at 298 K and 1 bar. Compared with the prepared SiO<sub>2</sub>, the adsorption capacity of CO<sub>2</sub> by Silicalite-1 molecular sieve increased by four times. Moreover, under the test condition of 298 K, it has a high selectivity coefficient for CO<sub>2</sub>/N<sub>2</sub> mixed gas, and after 10 times of adsorption-desorption cycle tests, the adsorption capacity of Silicalite-1 molecular sieve for CO<sub>2</sub> does not change significantly, and its adsorption rate can still be as high as 89.31%. The results indicate that Silicalite-1 molecular sieve prepared by solid phase synthesis method has good adsorption selectivity and adsorption–desorption cycle regeneration stability, and can be used in the field of CO<sub>2</sub> adsorption, separation and purification. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"14 6\",\"pages\":\"954-976\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2306\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2306","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
引用
批量引用