随机框架下山扇泥石流路径的概率识别

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Geophysical Research: Earth Surface Pub Date : 2024-12-05 DOI:10.1029/2024JF007946
M. Schiavo, C. Gregoretti, M. Boreggio, M. Barbini, M. Bernard
{"title":"随机框架下山扇泥石流路径的概率识别","authors":"M. Schiavo,&nbsp;C. Gregoretti,&nbsp;M. Boreggio,&nbsp;M. Barbini,&nbsp;M. Bernard","doi":"10.1029/2024JF007946","DOIUrl":null,"url":null,"abstract":"<p>Debris flows are solid-liquid mixtures originating in the upper part of mountain basins and routing downstream along incised channels. When the channel incises an open fan, the debris flow leaves the active channel and propagates downstream along a new pathway. This phenomenon is called an avulsion. We retrieve the most probable avulsion pathways leveraging a Monte Carlo approach based on using Digital Elevation Models (DEMs). Starting from LiDAR-based DEMs, we build an ensemble of synthetic DEMs using a local Gaussian probability density function of local elevation values and obtain an ensemble of drainage networks using a gravity-driven routing algorithm. The ensemble of drainage networks was used to obtain the most probable pathways of avulsions. We applied our methodology to a real monitored fan in the Dolomites (Northeastern Italian Alps) subjected to debris-flow activity with avulsions. Our approach allows us to verify the consistency between the occurrence probability of a synthetic pathway and those that historically occurred. Furthermore, our approach can be used to predict future debris-flow avulsions, assuming relevance in debris-flow risk assessment and planning of debris-flow control works.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007946","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Identification of Debris-Flow Pathways in Mountain Fans Within a Stochastic Framework\",\"authors\":\"M. Schiavo,&nbsp;C. Gregoretti,&nbsp;M. Boreggio,&nbsp;M. Barbini,&nbsp;M. Bernard\",\"doi\":\"10.1029/2024JF007946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Debris flows are solid-liquid mixtures originating in the upper part of mountain basins and routing downstream along incised channels. When the channel incises an open fan, the debris flow leaves the active channel and propagates downstream along a new pathway. This phenomenon is called an avulsion. We retrieve the most probable avulsion pathways leveraging a Monte Carlo approach based on using Digital Elevation Models (DEMs). Starting from LiDAR-based DEMs, we build an ensemble of synthetic DEMs using a local Gaussian probability density function of local elevation values and obtain an ensemble of drainage networks using a gravity-driven routing algorithm. The ensemble of drainage networks was used to obtain the most probable pathways of avulsions. We applied our methodology to a real monitored fan in the Dolomites (Northeastern Italian Alps) subjected to debris-flow activity with avulsions. Our approach allows us to verify the consistency between the occurrence probability of a synthetic pathway and those that historically occurred. Furthermore, our approach can be used to predict future debris-flow avulsions, assuming relevance in debris-flow risk assessment and planning of debris-flow control works.</p>\",\"PeriodicalId\":15887,\"journal\":{\"name\":\"Journal of Geophysical Research: Earth Surface\",\"volume\":\"129 12\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007946\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Earth Surface\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007946\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007946","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

泥石流是一种固液混合物,起源于山地盆地的上部,沿切割河道向下游移动。当河道切开一个敞开的扇时,泥石流离开活动河道,沿着一条新的通道向下游传播。这种现象被称为撕脱。我们利用基于数字高程模型(dem)的蒙特卡罗方法检索最可能的撕脱路径。从基于lidar的dem开始,我们使用局部高程值的局部高斯概率密度函数构建了合成dem的集合,并使用重力驱动路由算法获得了排水网络的集合。利用排水网络的集合来获得最可能的撕脱途径。我们将我们的方法应用于白云岩(意大利东北部阿尔卑斯山脉)中一个真实监测的扇,该扇受到泥石流活动和撕裂的影响。我们的方法使我们能够验证合成途径的发生概率与历史上发生的概率之间的一致性。此外,我们的方法可以用于预测未来的泥石流撕裂,假设与泥石流风险评估和泥石流控制工程的规划相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic Identification of Debris-Flow Pathways in Mountain Fans Within a Stochastic Framework

Debris flows are solid-liquid mixtures originating in the upper part of mountain basins and routing downstream along incised channels. When the channel incises an open fan, the debris flow leaves the active channel and propagates downstream along a new pathway. This phenomenon is called an avulsion. We retrieve the most probable avulsion pathways leveraging a Monte Carlo approach based on using Digital Elevation Models (DEMs). Starting from LiDAR-based DEMs, we build an ensemble of synthetic DEMs using a local Gaussian probability density function of local elevation values and obtain an ensemble of drainage networks using a gravity-driven routing algorithm. The ensemble of drainage networks was used to obtain the most probable pathways of avulsions. We applied our methodology to a real monitored fan in the Dolomites (Northeastern Italian Alps) subjected to debris-flow activity with avulsions. Our approach allows us to verify the consistency between the occurrence probability of a synthetic pathway and those that historically occurred. Furthermore, our approach can be used to predict future debris-flow avulsions, assuming relevance in debris-flow risk assessment and planning of debris-flow control works.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
期刊最新文献
Constraining Erosion Rates and Landscape Evolution With In Situ 10Be and 26Al Cosmogenic Nuclides at Table Mountain, Antarctica Issue Information Widespread Expansion of Salt Marsh Pools Observed on Maine Marshes Since 2009 Controls of Morphometric and Climatic Catchment Characteristics on Debris Flow and Flood Hazard on Alluvial Fans in High Mountain Asia: A Machine Learning Approach Characterization of Porous In-Stream Structures to Assess Their Implications on Flow Dynamics and Sediment Transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1