人工智能在欧洲铁路运输安全中的应用综述

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2024-11-07 DOI:10.1049/itr2.12587
Habib Hadj-Mabrouk
{"title":"人工智能在欧洲铁路运输安全中的应用综述","authors":"Habib Hadj-Mabrouk","doi":"10.1049/itr2.12587","DOIUrl":null,"url":null,"abstract":"<p>In accordance with the current European railway regulations and particularly the two directives relating to the interoperability (Directive (EU) 2016/797) and safety (Directive (EU) 2016/798) of the railway system, this literature review proposes to classify artificial intelligence (AI) applications by distinguishing the structural elements (Infrastructure, Energy, Control-Command-Signalling and Rolling Stock) and the functional elements (Operation and Traffic Management, Maintenance and Telematics Applications) of the European railway system. Several “classic” AI techniques are implemented, including machine learning (supervised, semi-supervised, unsupervised), deep learning such as artificial neural networks (ANN), natural language processing (NLP), case-based reasoning (CBR), etc. However, the inadequacy of these approaches to capitalize, share and reuse the knowledge involved has oriented research towards the development of new approaches based on ontologies and knowledge graphs. This study shows that the stages of data acquisition, modeling, processing and interpretation pose a crucial problem in rail transport. In addition, with complex models described as “black boxes”, it is difficult to understand how the internal reasoning mechanisms of the AI system impact the solution and predictions. The new explainable AI (XAI) approach can possibly provide an element of response to this problem.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2291-2324"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12587","citationCount":"0","resultStr":"{\"title\":\"A literature review on the applications of artificial intelligence to European rail transport safety\",\"authors\":\"Habib Hadj-Mabrouk\",\"doi\":\"10.1049/itr2.12587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In accordance with the current European railway regulations and particularly the two directives relating to the interoperability (Directive (EU) 2016/797) and safety (Directive (EU) 2016/798) of the railway system, this literature review proposes to classify artificial intelligence (AI) applications by distinguishing the structural elements (Infrastructure, Energy, Control-Command-Signalling and Rolling Stock) and the functional elements (Operation and Traffic Management, Maintenance and Telematics Applications) of the European railway system. Several “classic” AI techniques are implemented, including machine learning (supervised, semi-supervised, unsupervised), deep learning such as artificial neural networks (ANN), natural language processing (NLP), case-based reasoning (CBR), etc. However, the inadequacy of these approaches to capitalize, share and reuse the knowledge involved has oriented research towards the development of new approaches based on ontologies and knowledge graphs. This study shows that the stages of data acquisition, modeling, processing and interpretation pose a crucial problem in rail transport. In addition, with complex models described as “black boxes”, it is difficult to understand how the internal reasoning mechanisms of the AI system impact the solution and predictions. The new explainable AI (XAI) approach can possibly provide an element of response to this problem.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 12\",\"pages\":\"2291-2324\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12587\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12587\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12587","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

根据现行的欧洲铁路法规,特别是与铁路系统的互操作性(指令(EU) 2016/797)和安全性(指令(EU) 2016/798)相关的两个指令,本文献综述建议通过区分结构要素(基础设施,能源,控制-命令-信号和机车车辆)和功能要素(运营和交通管理,欧洲铁路系统的维护和远程信息处理应用。实现了几种“经典”人工智能技术,包括机器学习(监督,半监督,无监督),人工神经网络(ANN)等深度学习,自然语言处理(NLP),基于案例的推理(CBR)等。然而,这些方法在资本化、共享和重用所涉及的知识方面的不足,使研究转向了基于本体和知识图的新方法的开发。该研究表明,数据采集、建模、处理和解释阶段是轨道交通的关键问题。此外,由于复杂的模型被描述为“黑盒子”,很难理解人工智能系统的内部推理机制如何影响解决方案和预测。新的可解释AI (XAI)方法可能提供对这个问题的响应元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A literature review on the applications of artificial intelligence to European rail transport safety

In accordance with the current European railway regulations and particularly the two directives relating to the interoperability (Directive (EU) 2016/797) and safety (Directive (EU) 2016/798) of the railway system, this literature review proposes to classify artificial intelligence (AI) applications by distinguishing the structural elements (Infrastructure, Energy, Control-Command-Signalling and Rolling Stock) and the functional elements (Operation and Traffic Management, Maintenance and Telematics Applications) of the European railway system. Several “classic” AI techniques are implemented, including machine learning (supervised, semi-supervised, unsupervised), deep learning such as artificial neural networks (ANN), natural language processing (NLP), case-based reasoning (CBR), etc. However, the inadequacy of these approaches to capitalize, share and reuse the knowledge involved has oriented research towards the development of new approaches based on ontologies and knowledge graphs. This study shows that the stages of data acquisition, modeling, processing and interpretation pose a crucial problem in rail transport. In addition, with complex models described as “black boxes”, it is difficult to understand how the internal reasoning mechanisms of the AI system impact the solution and predictions. The new explainable AI (XAI) approach can possibly provide an element of response to this problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Evaluation of automated driving safety in urban mixed traffic environments Development of an enhanced base unit generation framework for predicting demand in free-floating micro-mobility Review of driver behaviour modelling for highway on-ramp merging Driving range estimation for electric bus based on atomic orbital search and back propagation neural network Intersection decision making for autonomous vehicles based on improved PPO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1