研究GPS、GSM和CDR数据推断时空旅行轨迹的相对精度

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2024-09-09 DOI:10.1049/itr2.12563
Khatun E. Zannat, Charisma F. Choudhury, Stephane Hess, David Watling
{"title":"研究GPS、GSM和CDR数据推断时空旅行轨迹的相对精度","authors":"Khatun E. Zannat,&nbsp;Charisma F. Choudhury,&nbsp;Stephane Hess,&nbsp;David Watling","doi":"10.1049/itr2.12563","DOIUrl":null,"url":null,"abstract":"<p>The potential of passively generated big data sources in transport modelling is well-recognised. However, assessing their accuracy and suitability for policymaking remains challenging due to the lack of ground-truth (GT) data for validation. This study evaluates the accuracy of inferring human mobility patterns from global positioning system (GPS), call detail records (CDR), and global system for mobile communication (GSM) data. Using outputs from an agent-based simulation platform (MATSim) as ‘synthetic GT’ (SGT), synthetic GPS, CDR, and GSM data were generated, considering their positional disturbances and conventional spatiotemporal resolutions. Mobility information, including activity location, departure time, and trajectory distance, derived from the synthetic data, was compared with SGT to evaluate the accuracy of passive trajectory data at both disaggregate and aggregate levels. The results indicated a higher accuracy of GPS data in identifying stay locations at high resolution. But, GSM data at a lower resolution effectively accounted for over 80% of the variability in stay locations. Comparisons of departure time distribution and travel distance revealed higher measurement errors in GSM and CDR data than in GPS data. The proposed simulation-based accuracy assessment framework will aid transport planners select the most suitable data for specific analyses and understand the potential margin of error involved.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 S1","pages":"3013-3033"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12563","citationCount":"0","resultStr":"{\"title\":\"Investigating the relative accuracy of GPS, GSM and CDR data for inferring spatiotemporal travel trajectories\",\"authors\":\"Khatun E. Zannat,&nbsp;Charisma F. Choudhury,&nbsp;Stephane Hess,&nbsp;David Watling\",\"doi\":\"10.1049/itr2.12563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The potential of passively generated big data sources in transport modelling is well-recognised. However, assessing their accuracy and suitability for policymaking remains challenging due to the lack of ground-truth (GT) data for validation. This study evaluates the accuracy of inferring human mobility patterns from global positioning system (GPS), call detail records (CDR), and global system for mobile communication (GSM) data. Using outputs from an agent-based simulation platform (MATSim) as ‘synthetic GT’ (SGT), synthetic GPS, CDR, and GSM data were generated, considering their positional disturbances and conventional spatiotemporal resolutions. Mobility information, including activity location, departure time, and trajectory distance, derived from the synthetic data, was compared with SGT to evaluate the accuracy of passive trajectory data at both disaggregate and aggregate levels. The results indicated a higher accuracy of GPS data in identifying stay locations at high resolution. But, GSM data at a lower resolution effectively accounted for over 80% of the variability in stay locations. Comparisons of departure time distribution and travel distance revealed higher measurement errors in GSM and CDR data than in GPS data. The proposed simulation-based accuracy assessment framework will aid transport planners select the most suitable data for specific analyses and understand the potential margin of error involved.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 S1\",\"pages\":\"3013-3033\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12563\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12563\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12563","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

被动生成的大数据源在交通建模中的潜力是公认的。然而,由于缺乏用于验证的基础事实(GT)数据,评估其准确性和政策制定的适用性仍然具有挑战性。本研究评估了从全球定位系统(GPS)、通话详细记录(CDR)和全球移动通信系统(GSM)数据推断人类移动模式的准确性。利用基于智能体的仿真平台(MATSim)的输出作为“合成GT”(SGT),考虑到GPS、CDR和GSM的位置干扰和常规时空分辨率,生成了合成的GPS、CDR和GSM数据。从合成数据中获得的移动信息,包括活动位置、出发时间和轨迹距离,与SGT进行比较,以评估非聚合和聚合水平上被动轨迹数据的准确性。结果表明,GPS数据在高分辨率下识别停留点位置具有较高的精度。但是,较低分辨率的GSM数据有效地解释了停留位置变化的80%以上。通过对出发时间分布和行进距离的比较,发现GSM和CDR数据的测量误差大于GPS数据。拟议的基于模拟的准确性评估框架将帮助交通规划者选择最合适的数据进行具体分析,并了解所涉及的潜在误差范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating the relative accuracy of GPS, GSM and CDR data for inferring spatiotemporal travel trajectories

The potential of passively generated big data sources in transport modelling is well-recognised. However, assessing their accuracy and suitability for policymaking remains challenging due to the lack of ground-truth (GT) data for validation. This study evaluates the accuracy of inferring human mobility patterns from global positioning system (GPS), call detail records (CDR), and global system for mobile communication (GSM) data. Using outputs from an agent-based simulation platform (MATSim) as ‘synthetic GT’ (SGT), synthetic GPS, CDR, and GSM data were generated, considering their positional disturbances and conventional spatiotemporal resolutions. Mobility information, including activity location, departure time, and trajectory distance, derived from the synthetic data, was compared with SGT to evaluate the accuracy of passive trajectory data at both disaggregate and aggregate levels. The results indicated a higher accuracy of GPS data in identifying stay locations at high resolution. But, GSM data at a lower resolution effectively accounted for over 80% of the variability in stay locations. Comparisons of departure time distribution and travel distance revealed higher measurement errors in GSM and CDR data than in GPS data. The proposed simulation-based accuracy assessment framework will aid transport planners select the most suitable data for specific analyses and understand the potential margin of error involved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Evaluation of automated driving safety in urban mixed traffic environments Development of an enhanced base unit generation framework for predicting demand in free-floating micro-mobility Review of driver behaviour modelling for highway on-ramp merging Driving range estimation for electric bus based on atomic orbital search and back propagation neural network Intersection decision making for autonomous vehicles based on improved PPO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1