城市混合交通环境下自动驾驶安全性评价

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2024-12-09 DOI:10.1049/itr2.12602
Sangjae Lee, Young Jo, Aram Jung, Juneyoung Park, Cheol Oh
{"title":"城市混合交通环境下自动驾驶安全性评价","authors":"Sangjae Lee,&nbsp;Young Jo,&nbsp;Aram Jung,&nbsp;Juneyoung Park,&nbsp;Cheol Oh","doi":"10.1049/itr2.12602","DOIUrl":null,"url":null,"abstract":"<p>Conflicting driving behaviours between automated vehicles and manually driven vehicles may compromise driving safety. The aim of this study is to analyse the safety of mixed traffic on urban roads. The driving simulation tests were conducted using a multi-agent driving simulator, which allows real-time synchronization of multiple simulators. These data were further processed to derive the driving behaviour parameters of manually driven vehicles in VISSIM traffic simulations. Driving safety evaluation indicators included conflict-related indicators, as well as individual safety indicators. The safety evaluation indicators were normalized through min–max normalization, and the risk scores were summed to evaluate the urban roads. The analysis revealed that driving safety was poor at unsignalized intersections with a market penetration rate of 10% and 50% and at signalized intersections with traffic islands and a market penetration rate of 100%, where conflicts arise from the deceleration of leading vehicles and lane changes. This finding is about the driving behaviour of automated vehicles, which maintain a greater distance from the leading vehicle than manually driven vehicles, resulting in poorer driving safety due to lane changes rather than deceleration. Using the findings of this study, criteria for assessing the safety of mixed traffic situations in existing road infrastructures can be established.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 S1","pages":"2963-2976"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12602","citationCount":"0","resultStr":"{\"title\":\"Evaluation of automated driving safety in urban mixed traffic environments\",\"authors\":\"Sangjae Lee,&nbsp;Young Jo,&nbsp;Aram Jung,&nbsp;Juneyoung Park,&nbsp;Cheol Oh\",\"doi\":\"10.1049/itr2.12602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conflicting driving behaviours between automated vehicles and manually driven vehicles may compromise driving safety. The aim of this study is to analyse the safety of mixed traffic on urban roads. The driving simulation tests were conducted using a multi-agent driving simulator, which allows real-time synchronization of multiple simulators. These data were further processed to derive the driving behaviour parameters of manually driven vehicles in VISSIM traffic simulations. Driving safety evaluation indicators included conflict-related indicators, as well as individual safety indicators. The safety evaluation indicators were normalized through min–max normalization, and the risk scores were summed to evaluate the urban roads. The analysis revealed that driving safety was poor at unsignalized intersections with a market penetration rate of 10% and 50% and at signalized intersections with traffic islands and a market penetration rate of 100%, where conflicts arise from the deceleration of leading vehicles and lane changes. This finding is about the driving behaviour of automated vehicles, which maintain a greater distance from the leading vehicle than manually driven vehicles, resulting in poorer driving safety due to lane changes rather than deceleration. Using the findings of this study, criteria for assessing the safety of mixed traffic situations in existing road infrastructures can be established.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 S1\",\"pages\":\"2963-2976\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12602\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12602\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12602","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶车辆与手动驾驶车辆之间的驾驶行为冲突可能会危及驾驶安全。本研究旨在分析城市道路混合交通的安全性。驾驶模拟测试使用多代理驾驶模拟器进行,该模拟器可实现多个模拟器的实时同步。这些数据经过进一步处理,得出了 VISSIM 交通模拟中人工驾驶车辆的驾驶行为参数。驾驶安全评价指标包括冲突相关指标和个人安全指标。通过最小-最大归一化对安全评价指标进行归一化处理,并对风险分数进行求和,从而对城市道路进行评价。分析结果表明,在市场渗透率为 10%和 50%的无信号交叉路口,以及在交通岛和市场渗透率为 100%的有信号交叉路口,驾驶安全性较差,冲突源于前车减速和变道。这一发现与自动驾驶车辆的驾驶行为有关,与手动驾驶车辆相比,自动驾驶车辆与前导车辆保持更大的距离,导致因变线而非减速造成的驾驶安全性较差。利用这项研究的结果,可以建立评估现有道路基础设施中混合交通情况安全性的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of automated driving safety in urban mixed traffic environments

Conflicting driving behaviours between automated vehicles and manually driven vehicles may compromise driving safety. The aim of this study is to analyse the safety of mixed traffic on urban roads. The driving simulation tests were conducted using a multi-agent driving simulator, which allows real-time synchronization of multiple simulators. These data were further processed to derive the driving behaviour parameters of manually driven vehicles in VISSIM traffic simulations. Driving safety evaluation indicators included conflict-related indicators, as well as individual safety indicators. The safety evaluation indicators were normalized through min–max normalization, and the risk scores were summed to evaluate the urban roads. The analysis revealed that driving safety was poor at unsignalized intersections with a market penetration rate of 10% and 50% and at signalized intersections with traffic islands and a market penetration rate of 100%, where conflicts arise from the deceleration of leading vehicles and lane changes. This finding is about the driving behaviour of automated vehicles, which maintain a greater distance from the leading vehicle than manually driven vehicles, resulting in poorer driving safety due to lane changes rather than deceleration. Using the findings of this study, criteria for assessing the safety of mixed traffic situations in existing road infrastructures can be established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Evaluation of automated driving safety in urban mixed traffic environments Development of an enhanced base unit generation framework for predicting demand in free-floating micro-mobility Review of driver behaviour modelling for highway on-ramp merging Driving range estimation for electric bus based on atomic orbital search and back propagation neural network Intersection decision making for autonomous vehicles based on improved PPO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1