Vincent Marc, Franck Tison, Claude Doussan, Julien Dupont, Milanka Babic, Roland Simler, Stéphane Ruy
{"title":"利用长期同位素监测和建模评估重力灌溉对地下水补给的水文影响","authors":"Vincent Marc, Franck Tison, Claude Doussan, Julien Dupont, Milanka Babic, Roland Simler, Stéphane Ruy","doi":"10.1002/hyp.70022","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the hydrological processes driving groundwater recharge in the Avignon Plain (south-eastern France) through a detailed analysis of the interactions between irrigation, rainfall and soil water using long-term isotopic monitoring and lumped parameter modelling. More than 15 years of monthly isotopic data from rainwater, surface water, soil water and groundwater were analysed to quantify the contributions of gravity-fed irrigation and natural rainfall to aquifer recharge. Our results show that gravity-fed irrigation contributes about 85% of the recharge, highlighting the significant role of traditional agricultural practices in maintaining groundwater levels. Through isotopic tracing and modelling, we observed variations in transit times, with faster infiltration pathways associated with irrigation flows compared to more prolonged recharge from rainfall. This study not only demonstrates the effectiveness of isotopic techniques for assessing water sources in complex recharge scenarios but also provides insights into how irrigation practices affect groundwater sustainability. These results contribute to current thinking on sustainable water management and highlight the need for integrated approaches that reconcile agricultural water use efficiency and groundwater conservation.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70022","citationCount":"0","resultStr":"{\"title\":\"Assessing the Hydrological Impact of Gravity-Fed Irrigation on Groundwater Recharge Using Long-Term Isotope Monitoring and Modelling\",\"authors\":\"Vincent Marc, Franck Tison, Claude Doussan, Julien Dupont, Milanka Babic, Roland Simler, Stéphane Ruy\",\"doi\":\"10.1002/hyp.70022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the hydrological processes driving groundwater recharge in the Avignon Plain (south-eastern France) through a detailed analysis of the interactions between irrigation, rainfall and soil water using long-term isotopic monitoring and lumped parameter modelling. More than 15 years of monthly isotopic data from rainwater, surface water, soil water and groundwater were analysed to quantify the contributions of gravity-fed irrigation and natural rainfall to aquifer recharge. Our results show that gravity-fed irrigation contributes about 85% of the recharge, highlighting the significant role of traditional agricultural practices in maintaining groundwater levels. Through isotopic tracing and modelling, we observed variations in transit times, with faster infiltration pathways associated with irrigation flows compared to more prolonged recharge from rainfall. This study not only demonstrates the effectiveness of isotopic techniques for assessing water sources in complex recharge scenarios but also provides insights into how irrigation practices affect groundwater sustainability. These results contribute to current thinking on sustainable water management and highlight the need for integrated approaches that reconcile agricultural water use efficiency and groundwater conservation.</p>\",\"PeriodicalId\":13189,\"journal\":{\"name\":\"Hydrological Processes\",\"volume\":\"38 12\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70022\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70022\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70022","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Assessing the Hydrological Impact of Gravity-Fed Irrigation on Groundwater Recharge Using Long-Term Isotope Monitoring and Modelling
This study investigates the hydrological processes driving groundwater recharge in the Avignon Plain (south-eastern France) through a detailed analysis of the interactions between irrigation, rainfall and soil water using long-term isotopic monitoring and lumped parameter modelling. More than 15 years of monthly isotopic data from rainwater, surface water, soil water and groundwater were analysed to quantify the contributions of gravity-fed irrigation and natural rainfall to aquifer recharge. Our results show that gravity-fed irrigation contributes about 85% of the recharge, highlighting the significant role of traditional agricultural practices in maintaining groundwater levels. Through isotopic tracing and modelling, we observed variations in transit times, with faster infiltration pathways associated with irrigation flows compared to more prolonged recharge from rainfall. This study not only demonstrates the effectiveness of isotopic techniques for assessing water sources in complex recharge scenarios but also provides insights into how irrigation practices affect groundwater sustainability. These results contribute to current thinking on sustainable water management and highlight the need for integrated approaches that reconcile agricultural water use efficiency and groundwater conservation.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.