{"title":"基于深度强化学习的电动汽车充电时空动态导航","authors":"Ali Can Erüst, Fatma Yıldız Taşcıkaraoğlu","doi":"10.1049/itr2.12588","DOIUrl":null,"url":null,"abstract":"<p>This paper considers the real-time spatio-temporal electric vehicle charging navigation problem in a dynamic environment by utilizing a shortest path-based reinforcement learning approach. In a data sharing system including transportation network, an electric vehicle (EV) and EV charging stations (EVCSs), it is aimed to determine the most convenient EVCS and the optimal path for reducing the travel, charging and waiting costs. To estimate the waiting times at EVCSs, Gaussian process regression algorithm is integrated using a real-time dataset comprising of state-of-charge and arrival-departure times of EVs. The optimization problem is modelled as a Markov decision process with unknown transition probability to overcome the uncertainties arising from time-varying variables. A recently proposed on-policy actor–critic method, phasic policy gradient (PPG) which extends the proximal policy optimization algorithm with an auxiliary optimization phase to improve training by distilling features from the critic to the actor network, is used to make EVCS decisions on the network where EV travels through the optimal path from origin node to EVCS by considering dynamic traffic conditions, unit value of EV owner and time-of-use charging price. Three case studies are carried out for 24 nodes Sioux-Falls benchmark network. It is shown that phasic policy gradient achieves an average of 9% better reward compared to proximal policy optimization and the total time decreases by 7–10% when EV owner cost is considered.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2520-2531"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12588","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal dynamic navigation for electric vehicle charging using deep reinforcement learning\",\"authors\":\"Ali Can Erüst, Fatma Yıldız Taşcıkaraoğlu\",\"doi\":\"10.1049/itr2.12588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper considers the real-time spatio-temporal electric vehicle charging navigation problem in a dynamic environment by utilizing a shortest path-based reinforcement learning approach. In a data sharing system including transportation network, an electric vehicle (EV) and EV charging stations (EVCSs), it is aimed to determine the most convenient EVCS and the optimal path for reducing the travel, charging and waiting costs. To estimate the waiting times at EVCSs, Gaussian process regression algorithm is integrated using a real-time dataset comprising of state-of-charge and arrival-departure times of EVs. The optimization problem is modelled as a Markov decision process with unknown transition probability to overcome the uncertainties arising from time-varying variables. A recently proposed on-policy actor–critic method, phasic policy gradient (PPG) which extends the proximal policy optimization algorithm with an auxiliary optimization phase to improve training by distilling features from the critic to the actor network, is used to make EVCS decisions on the network where EV travels through the optimal path from origin node to EVCS by considering dynamic traffic conditions, unit value of EV owner and time-of-use charging price. Three case studies are carried out for 24 nodes Sioux-Falls benchmark network. It is shown that phasic policy gradient achieves an average of 9% better reward compared to proximal policy optimization and the total time decreases by 7–10% when EV owner cost is considered.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 12\",\"pages\":\"2520-2531\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12588\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12588\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12588","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Spatio-temporal dynamic navigation for electric vehicle charging using deep reinforcement learning
This paper considers the real-time spatio-temporal electric vehicle charging navigation problem in a dynamic environment by utilizing a shortest path-based reinforcement learning approach. In a data sharing system including transportation network, an electric vehicle (EV) and EV charging stations (EVCSs), it is aimed to determine the most convenient EVCS and the optimal path for reducing the travel, charging and waiting costs. To estimate the waiting times at EVCSs, Gaussian process regression algorithm is integrated using a real-time dataset comprising of state-of-charge and arrival-departure times of EVs. The optimization problem is modelled as a Markov decision process with unknown transition probability to overcome the uncertainties arising from time-varying variables. A recently proposed on-policy actor–critic method, phasic policy gradient (PPG) which extends the proximal policy optimization algorithm with an auxiliary optimization phase to improve training by distilling features from the critic to the actor network, is used to make EVCS decisions on the network where EV travels through the optimal path from origin node to EVCS by considering dynamic traffic conditions, unit value of EV owner and time-of-use charging price. Three case studies are carried out for 24 nodes Sioux-Falls benchmark network. It is shown that phasic policy gradient achieves an average of 9% better reward compared to proximal policy optimization and the total time decreases by 7–10% when EV owner cost is considered.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf