M. J. Jiménez, J. Juan, M.S. Sandoval, P. Bechthold, P. V. Jasen, E. A. González, A. Juan
{"title":"锂装饰石墨二炔纳米片:非水锂电池电极材料的理论研究","authors":"M. J. Jiménez, J. Juan, M.S. Sandoval, P. Bechthold, P. V. Jasen, E. A. González, A. Juan","doi":"10.1002/batt.202400514","DOIUrl":null,"url":null,"abstract":"<p>In this work, Density Functional Theory (DFT) is used to study pristine and defective GDY. We investigate the effect of Li atom adsorption on the electronic and structural properties of this 2D material. In both cases, the Li atom is located at the corner of the triangular-like pore (H1), but with a slight shift for the defective system. In the perfect system, the Li−C bond distances range from 2.289 Å to 2.461 Å, while in the defective case, they range from 2.237 Å to 3.184 Å. In the perfect case, the GDY−Li system becomes metallic and the Li 2 s states are stabilized. Charge transfer to the surfaces occurs near the vicinity of the Li atom. The C vacancy generates new C=C bonds similar to double bonds, enhancing the interaction with Li through strong conjugation. After Li adsorption, the sum of bond order for all the C atoms increases in both structures, from 0.4 % to 6 %. The Li storage capacity without significant restructuring is six Li atoms. When the atom concentration increases, the OCV values for Li decrease from 0.93 V to 0.23 V. For defective GDY, the specific capacity is 788 mAhg<sub>−1</sub>, which is slightly higher than for pristine case.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Li Decorated Graphdiyne Nanosheets: A Theoretical Study for an Electrode Material for Nonaqueous Lithium Batteries\",\"authors\":\"M. J. Jiménez, J. Juan, M.S. Sandoval, P. Bechthold, P. V. Jasen, E. A. González, A. Juan\",\"doi\":\"10.1002/batt.202400514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, Density Functional Theory (DFT) is used to study pristine and defective GDY. We investigate the effect of Li atom adsorption on the electronic and structural properties of this 2D material. In both cases, the Li atom is located at the corner of the triangular-like pore (H1), but with a slight shift for the defective system. In the perfect system, the Li−C bond distances range from 2.289 Å to 2.461 Å, while in the defective case, they range from 2.237 Å to 3.184 Å. In the perfect case, the GDY−Li system becomes metallic and the Li 2 s states are stabilized. Charge transfer to the surfaces occurs near the vicinity of the Li atom. The C vacancy generates new C=C bonds similar to double bonds, enhancing the interaction with Li through strong conjugation. After Li adsorption, the sum of bond order for all the C atoms increases in both structures, from 0.4 % to 6 %. The Li storage capacity without significant restructuring is six Li atoms. When the atom concentration increases, the OCV values for Li decrease from 0.93 V to 0.23 V. For defective GDY, the specific capacity is 788 mAhg<sub>−1</sub>, which is slightly higher than for pristine case.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"7 12\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400514\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400514","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
本文采用密度泛函理论(DFT)对原始GDY和缺陷GDY进行了研究。我们研究了Li原子吸附对这种二维材料的电子和结构性能的影响。在这两种情况下,Li原子都位于三角形孔(H1)的角落,但在缺陷体系中有轻微的移位。在完美体系中,Li−C键的键距在2.289 Å ~ 2.461 Å之间,而在缺陷体系中,键距在2.237 Å ~ 3.184 Å之间。在理想情况下,GDY−Li体系变成金属,Li 2s态稳定。电荷向表面的转移发生在Li原子附近。C空位产生新的类似双键的C=C键,通过强共轭作用增强了与Li的相互作用。吸附Li后,两种结构中所有C原子的键序之和均从0.4%增加到6%。没有明显重构的锂存储容量为6个锂原子。随着原子浓度的增加,Li的OCV值从0.93 V降低到0.23 V。缺陷GDY的比容量为788 mAhg−1,略高于原始GDY。
Li Decorated Graphdiyne Nanosheets: A Theoretical Study for an Electrode Material for Nonaqueous Lithium Batteries
In this work, Density Functional Theory (DFT) is used to study pristine and defective GDY. We investigate the effect of Li atom adsorption on the electronic and structural properties of this 2D material. In both cases, the Li atom is located at the corner of the triangular-like pore (H1), but with a slight shift for the defective system. In the perfect system, the Li−C bond distances range from 2.289 Å to 2.461 Å, while in the defective case, they range from 2.237 Å to 3.184 Å. In the perfect case, the GDY−Li system becomes metallic and the Li 2 s states are stabilized. Charge transfer to the surfaces occurs near the vicinity of the Li atom. The C vacancy generates new C=C bonds similar to double bonds, enhancing the interaction with Li through strong conjugation. After Li adsorption, the sum of bond order for all the C atoms increases in both structures, from 0.4 % to 6 %. The Li storage capacity without significant restructuring is six Li atoms. When the atom concentration increases, the OCV values for Li decrease from 0.93 V to 0.23 V. For defective GDY, the specific capacity is 788 mAhg−1, which is slightly higher than for pristine case.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.