重新评估阿波罗17号72415-72417号月球云母的岩石成因:月球地幔深处的遗迹?

IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Meteoritics & Planetary Science Pub Date : 2024-11-13 DOI:10.1111/maps.14269
K. K. Bhanot, H. Downes, B. G. Rider-Stokes, E. S. Jennings, M. Anand, J. F. Snape, M. J. Whitehouse
{"title":"重新评估阿波罗17号72415-72417号月球云母的岩石成因:月球地幔深处的遗迹?","authors":"K. K. Bhanot,&nbsp;H. Downes,&nbsp;B. G. Rider-Stokes,&nbsp;E. S. Jennings,&nbsp;M. Anand,&nbsp;J. F. Snape,&nbsp;M. J. Whitehouse","doi":"10.1111/maps.14269","DOIUrl":null,"url":null,"abstract":"<p>Lunar dunite samples 72415–72417, collected by Apollo 17 astronauts from a South Massif boulder in the Taurus–Littrow valley, are crushed breccias composed of several types of olivine- and clinopyroxene-rich clasts, some of which are (or contain) intergrowths of Cr-spinel and pyroxenes or plagioclase. Among the clasts are ellipsoidal symplectites of Cr-spinel and pyroxene, up to 300 μm in diameter, which have bulk compositions consistent with those of olivine + garnet. These symplectites are inferred to originally have been olivine + Mg-Cr-rich garnet (pyrope–uvarovite) that formed deep in the lunar mantle and were subsequently transported closer to the lunar surface (spinel- or plagioclase-peridotite stability fields), perhaps during gravitationally driven overturn. Abundant microsymplectite (30 μm diameter) intergrowths of Cr-spinel and pyroxene inside olivine grains, many associated with inclusions of plagioclase and augite, formed during a later decompression event (perhaps excavation to the lunar surface). These inclusions have not previously been recorded in these samples and could be responsible for earlier reports of igneous zoning in olivine. Electron backscatter diffraction data show evidence of high shock pressures (&gt;50 GPa), which are inferred to have occurred during the impact which excavated the dunites from the shallow anorthite-bearing lunar mantle. Apatite veinlets post-date the shock metamorphism and have been dated to 3983 ± 72 Ma and 3913 ± 118 Ma by the U–Pb method. This age is consistent with that inferred for the Imbrium impact basin, suggesting that the dunite was finally excavated from the mantle during formation of the Imbrium basin.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 12","pages":"3129-3149"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14269","citationCount":"0","resultStr":"{\"title\":\"A reappraisal of the petrogenesis of Apollo 17 lunar dunites 72415-72417: Relics of the deep lunar mantle?\",\"authors\":\"K. K. Bhanot,&nbsp;H. Downes,&nbsp;B. G. Rider-Stokes,&nbsp;E. S. Jennings,&nbsp;M. Anand,&nbsp;J. F. Snape,&nbsp;M. J. Whitehouse\",\"doi\":\"10.1111/maps.14269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lunar dunite samples 72415–72417, collected by Apollo 17 astronauts from a South Massif boulder in the Taurus–Littrow valley, are crushed breccias composed of several types of olivine- and clinopyroxene-rich clasts, some of which are (or contain) intergrowths of Cr-spinel and pyroxenes or plagioclase. Among the clasts are ellipsoidal symplectites of Cr-spinel and pyroxene, up to 300 μm in diameter, which have bulk compositions consistent with those of olivine + garnet. These symplectites are inferred to originally have been olivine + Mg-Cr-rich garnet (pyrope–uvarovite) that formed deep in the lunar mantle and were subsequently transported closer to the lunar surface (spinel- or plagioclase-peridotite stability fields), perhaps during gravitationally driven overturn. Abundant microsymplectite (30 μm diameter) intergrowths of Cr-spinel and pyroxene inside olivine grains, many associated with inclusions of plagioclase and augite, formed during a later decompression event (perhaps excavation to the lunar surface). These inclusions have not previously been recorded in these samples and could be responsible for earlier reports of igneous zoning in olivine. Electron backscatter diffraction data show evidence of high shock pressures (&gt;50 GPa), which are inferred to have occurred during the impact which excavated the dunites from the shallow anorthite-bearing lunar mantle. Apatite veinlets post-date the shock metamorphism and have been dated to 3983 ± 72 Ma and 3913 ± 118 Ma by the U–Pb method. This age is consistent with that inferred for the Imbrium impact basin, suggesting that the dunite was finally excavated from the mantle during formation of the Imbrium basin.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"59 12\",\"pages\":\"3129-3149\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14269\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.14269\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14269","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

阿波罗17号宇航员从金牛座-利特罗山谷的南地块巨石中收集的月球上的白云石样本72415-72417是由几种富含橄榄石和斜辉石的碎屑组成的破碎角砾岩,其中一些是(或包含)铬尖晶石和辉石或斜长石的共生体。其中含铬尖晶石和辉石椭球体,直径达300 μm,体积组成与橄榄石+石榴石一致。据推测,这些杂岩最初是由橄榄石+富含镁铬的石榴石(花岗-长云母岩)组成,它们形成于月幔深处,随后可能在重力驱动的翻覆过程中被运送到更靠近月球表面的地方(尖晶石-或斜长石-橄榄岩稳定场)。在后来的减压事件(可能是对月球表面的挖掘)中,橄榄石颗粒中形成了大量的铬尖晶石和辉石微晶体(直径30 μm),其中许多与斜长石和辉石包裹体有关。这些包裹体以前没有在这些样品中被记录下来,可能是早先关于橄榄石中火成岩分带的报告的原因。电子背散射衍射数据显示了高冲击压力(>50 GPa)的证据,推断这是在撞击期间发生的,撞击从含钙长石的浅层月幔中挖掘出了dunites。磷灰石脉脉在激波变质作用发生后,用U-Pb法测定其年龄分别为3983±72 Ma和3913±118 Ma。这一年龄与英brium撞击盆地的年龄推断一致,表明英brium盆地形成过程中最终从地幔中挖掘出了暗质岩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A reappraisal of the petrogenesis of Apollo 17 lunar dunites 72415-72417: Relics of the deep lunar mantle?

Lunar dunite samples 72415–72417, collected by Apollo 17 astronauts from a South Massif boulder in the Taurus–Littrow valley, are crushed breccias composed of several types of olivine- and clinopyroxene-rich clasts, some of which are (or contain) intergrowths of Cr-spinel and pyroxenes or plagioclase. Among the clasts are ellipsoidal symplectites of Cr-spinel and pyroxene, up to 300 μm in diameter, which have bulk compositions consistent with those of olivine + garnet. These symplectites are inferred to originally have been olivine + Mg-Cr-rich garnet (pyrope–uvarovite) that formed deep in the lunar mantle and were subsequently transported closer to the lunar surface (spinel- or plagioclase-peridotite stability fields), perhaps during gravitationally driven overturn. Abundant microsymplectite (30 μm diameter) intergrowths of Cr-spinel and pyroxene inside olivine grains, many associated with inclusions of plagioclase and augite, formed during a later decompression event (perhaps excavation to the lunar surface). These inclusions have not previously been recorded in these samples and could be responsible for earlier reports of igneous zoning in olivine. Electron backscatter diffraction data show evidence of high shock pressures (>50 GPa), which are inferred to have occurred during the impact which excavated the dunites from the shallow anorthite-bearing lunar mantle. Apatite veinlets post-date the shock metamorphism and have been dated to 3983 ± 72 Ma and 3913 ± 118 Ma by the U–Pb method. This age is consistent with that inferred for the Imbrium impact basin, suggesting that the dunite was finally excavated from the mantle during formation of the Imbrium basin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meteoritics & Planetary Science
Meteoritics & Planetary Science 地学天文-地球化学与地球物理
CiteScore
3.90
自引率
31.80%
发文量
121
审稿时长
3 months
期刊介绍: First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.
期刊最新文献
Issue Information Cover 2004 Barringer Medal for Peter Schultz A reappraisal of the petrogenesis of Apollo 17 lunar dunites 72415-72417: Relics of the deep lunar mantle? 2007 Service Award for John Schutt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1